首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strategy for in situ chemical gelation of poly(N‐isopropylacrylamide‐co‐hydroxylethyl methacrylate) [P(NIPAAm‐co‐HEMA)]‐based polymers was demonstrated. Two types of new P(NIPAAm‐co‐HEMA) derivatives with alkyne and azide pendant groups, respectively, were prepared. When the solutions of the two derivatives were mixed together, a crosslinking reaction, a type of Huisgen's 1,3‐dipolar azide‐alkyne cycloaddition, in the presence of Cu(I) catalyst occurs. The morphology, equilibrium swelling ratio, swelling kinetics, and temperature response kinetics of the in situ gelated hydrogels were studied. In comparison with the conventional PNIPAAm hydrogel, because of the spatial hindrance of polymeric chains, the resulted hydrogels had a macroporous structure as well as a fast shrinking rate. The strategy described here presents a potential alternative to the traditional synthesis techniques for the in situ formation of thermoresponsive hydrogels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5263–5277, 2008  相似文献   

2.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

4.
The successful encapsulation of reactive components for the azide/alkyne‐“click”‐reaction is reported featuring for the first time the use of a liquid polymer as reactive component. A liquid, azido‐telechelic three‐arm star poly(isobutylene) ( = 3900 g · mol−1) as well as trivalent alkynes were encapsulated into micron‐sized capsules and embedded into a polymer‐matrix (high‐molecular weight poly(isobutylene), = 250 000 g · mol−1). Using (CuIBr(PPh3)3) as catalyst for the azide/alkyne‐“click”‐reaction, crosslinking of the two components at 40 °C is observed within 380 min and as fast as 10 min at 80 °C. Significant recovery of the tensile storage modulus was observed in a material containing 10 wt.‐% and accordingly 5 wt.‐% capsules including the reactive components within 5 d at room temperature, thus proving a new concept for materials with self‐healing properties.

  相似文献   


5.
The star graft copolymers composed of hyperbranched polyglycerol (HPG) as core and well defined asymmetric mixed “V‐shaped” identical polystyrene (PS) and poly(tert‐butyl acrylate) as side chains were synthesized via the “click” chemistry. The V‐shaped side chain bearing a “clickable” alkyne group at the conjunction point of two blocks was first prepared through the combination of anionic polymerization of styrene (St) and atom transfer radical polymerization of tert‐butyl acrylate (tBA) monomer, and then “click” chemistry was conducted between the alkyne groups on the side chains and azide groups on HPG core. The obtained star graft copolymers and intermediates were characterized by gel permeation chromatography (GPC), GPC equipped with a multiangle laser‐light scattering detector (GPC‐MALLS), nuclear magnetic resonance spectroscopy and fourier transform infrared. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1308–1316, 2009  相似文献   

6.
The synthesis of ABC triblock copolymers were accomplished by Cu(0)‐catalyzed one‐pot strategy combining single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction with “click” chemistry. First, the precursors α,ω‐heterofunctionalized poly(ethylene oxide) (PEO) with a 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group and an alkyne group, polystyrene (PS), and poly(tert‐butyl acrylate) (PtBA) with bromine or azide end group were designed and synthesized, respectively. Then, the one‐pot coupling reactions between these precursors were carried out in the system of Cu(0)/Me6TREN: The SET‐NRC reaction between bromine group and nitroxide radical group, subsequently click coupling between azide and alkyne group. It was noticeable that Cu(I) generated from Cu(0) by SET mechanism was utilized to catalyze click chemistry. To estimate the effect of Cu(0) on the one‐pot reaction, a comparative analysis was performed in presence of different Cu(0) species. The result showed that Cu(0) with more active surface area could accelerate the one‐pot reaction significantly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A cyclic initiator for the nitroxide‐mediated controlled radical polymerization (NMP) is a powerful tool for the preparation of macrocyclic polymers via a ring‐expansion vinyl polymerization mechanism. For this purpose, we prepared a Hawker‐type NMP‐initiator that includes an azide and a terminal alkyne as an acyclic precursor, which is subsequently tethered via an intramolecular azide/alkyne‐“click”‐reaction, producing the final cyclic NMP‐initiator. The polymerization reactions of styrene with cyclic initiator were demonstrated and the resultant polymers were characterized by the gel permeation chromatography (GPC) and the matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). These results prove that the ring‐expansion polymerization of styrene occurred together with the radical ring‐crossover reactions originating from the exchange of the inherent nitroxides generating macrocyclic polystyrenes with higher expanded rings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3402–3416, 2010  相似文献   

8.
9.
A new strategy for the one‐pot preparation of ABA‐type block‐graft copolymers via a combination of Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) “click” chemistry with atom transfer nitroxide radical coupling (ATNRC) reaction was reported. First, sequential ring‐opening polymerization of 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) and 1‐ethoxyethyl glycidyl ether provided a backbone with pendant TEMPO and ethoxyethyl‐protected hydroxyl groups, the hydroxyl groups could be recovered by hydrolysis and then esterified with 2‐bromoisobutyryl bromide, the bromide groups were converted into azide groups via treatment with NaN3. Subsequently, bromine‐containing poly(tert‐butyl acrylate) (PtBA‐Br) was synthesized by atom transfer radical polymerization. Alkyne‐containing polystyrene (PS‐alkyne) was prepared by capping polystyryl‐lithium with ethylene oxide and subsequent modification by propargyl bromide. Finally, the CuAAC and ATNRC reaction proceeded simultaneously between backbone and PtBA‐Br, PS‐alkyne. The effects of catalyst systems on one‐pot reaction were discussed. The block‐graft copolymers and intermediates were characterized by size‐exclusion chromatography, 1H NMR, and FT‐IR in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Reported here is a novel approach toward efficient preparation of well‐defined cylindrical brushes polymer (CBPs) with both hydrophobic and hydrophilic side chains connected to the linear backbone by interfacial “click” chemistry in two immiscible solvents. The CBPs with high grafting density of more than 95% and molecular polydispersity (Mw/Mn) less than 1.12 can be readily synthesized using present approach. On contrary, the CBPs synthesized from the “click” reaction in a single solvent in homogenous state have low grafting density of less than 55% and molecular polydispersity (Mw/Mn) more than 1.78. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
We have synthesized a “universal ligand” incorporating a phosphonate surface anchor and a terminal alkyne moiety which binds to TiO2 nanoparticles and exhibits excellent dispersity in organic solvents. The alkyne functionality permits attachment of azide terminated polymer shells using “click” chemistry. Thus TiO2 core nanoparticles have been encapsulated with both polystyrene and poly(t‐butyl acrylate) shells. The TiO2‐poly(t‐butyl acrylate) core shell nanoparticles are amenable to further chemical transformation into TiO2‐poly(acrylic acid) nanoparticles through ester hydrolysis. These TiO2‐polyacrylic acid nanoparticles are dispersible in aqueous solution. The resulting core‐shell nanoparticles have been incorporated as high K dielectric films in capacitor and organic thin film transistor devices and are promising new materials for flexible electronics applications.

  相似文献   


12.
A hydrophilic emulsion‐templated porous polymer (polyHIPE) is synthesized by CuAAC “click” chemistry. Herein, a 4,4′‐diazidostilbene‐2,2′‐disulfonic acid disodium salt‐4H2O (DAS) and tripropargylamine in the mixture of water and N,N‐dimethylformamide solution is used as external phase of the high internal phase emulsion template, and paraffin liquid is involved as the internal phase. The resulting polyHIPE has a well‐defined interconnected pore structure, which could be tailored by changing preparation parameters, such as reagent content, internal phase volume fraction, and surfactant concentration. Thermal analysis shows that the polyHIPE is stable under 180 °C. Owing to the presence of a large number of sodium sulfonate groups from the reagent DAS and the triazoles groups produced in the reaction, the polyHIPE is proved to be a highly efficient adsorbent of heavy metal ion (i.e., up to 52 mg/g for Cu(II) ions) in water. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2129–2135  相似文献   

13.
The development of a novel nucleophilic thio‐bromo “Click” reaction, specifically base‐mediated thioetherification of thioglycerol with α‐bromoesters, is reported. Combination of this thio‐bromo click reaction with subsequent acylation with 2‐bromopropionyl bromide provides an iterative two‐step divergent growth approach to the synthesis of a new class of poly(thioglycerol‐2‐propionate) (PTP) dendrimers. This approach is demonstrated in the rapid preparation of four generation (G1–G4) of PTP dendrimers with high‐structural fidelity. The isolated G1–G4 bromide‐terminated dendrimers can be used directly as dendritic macroinitiators for the synthesis of star‐polymers via SET‐LRP. Additionally, the intermediate hydroxy‐terminated dendrimers are analogs of other water‐soluble polyester and polyether dendrimers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3931–3939, 2009  相似文献   

14.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
The end‐to‐end cyclization of telechelic polyisobutylenes (PIB's) toward cyclic polyisobutylenes is reported, using either ring‐closing metathesis (RCM) or the azide/alkyne‐“click”‐reaction. The first approach uses bisallyl‐telchelic PIB's (Mn = 1650, 3680, 9770 g mol?1) and Grubbs 1st‐, 2nd‐, and 3rd‐generation catalyst leading to cyclic PIB's in 60–80% yield, with narrow polydispersities (Mw/Mn = 1.25). Azide/alkyne‐“click”‐reactions of bisalkyne‐telechelic PIB's (Mn = 3840 and 9820 g mol?1) with excess of 1,11‐diazido‐undecane leads to the formation of mixtures of linear/cyclic PIB's under formation of oligomeric cycles. Subsequent reaction of the residual azide‐moieties in the linear PIB's with excess of alkyne‐telechelic PEO enables the chromatographic removal of the resulting linear PEO‐PIB‐block copolymers by column chromatography. Thus pure cyclic PIB's can be obtained using this double‐“click”‐method, devoid of linear contaminants. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 671–680, 2010  相似文献   

16.
In this study, a facile method to fabricate reduction‐responsive core‐crosslinked micelles via in situ thiol‐ene “click” reaction was reported. A series of biodegradable poly(ether‐ester)s with multiple pendent mercapto groups were first synthesized by melt polycondensation of diol poly(ethylene glycol), 1,4‐butanediol, and mercaptosuccinic acid using scandium trifluoromethanesulfonate [Sc(OTf)3] as the catalyst. Then paclitaxel (PTX)‐loaded core‐crosslinked (CCL) micelles were successfully prepared by in situ crosslinking hydrophobic polyester blocks in aqueous media via thiol‐ene “click” chemistry using 2,2′‐dithiodiethanol diacrylate as the crosslinker. These PTX‐loaded CCL micelles with disulfide bonds exhibited reduction‐responsive behaviors in the presence of dithiothreitol (DTT). The drug release profile of the PTX‐loaded CCL micelles revealed that only a small amount of loaded PTX was released slowly in phosphate buffer solution (PBS) without DTT, while quick release was observed in the presence of 10.0 mM DTT. Cell count kit (CCK‐8) assays revealed that the reduction‐sensitive PTX‐loaded CCL micelles showed high antitumor activity toward HeLa cells, which was significantly higher than that of reduction‐insensitive counterparts and free PTX. This kind of biodegradable and biocompatible CCL micelles could serve as a bioreducible nanocarrier for the controlled antitumor drug release. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 99–107  相似文献   

17.
The development of a novel nucleophilic thio‐bromo “Click” reaction, specifically base‐mediated thioetherification of thioglycerol with α‐bromoesters was reported in an earlier article. The combination of this thio‐bromo click reaction with subsequent acylation with 2‐bromopropionyl bromide provides an iterative two‐step divergent growth approach to the synthesis of a new class of poly(thioglycerol‐2‐ propionate) (PTP) dendrimers. In this article, the addition of a third step, the single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA), was shown to provides access to a three‐step “branch” and “grow” divergent approach to dendritic macromolecules wherein poly(methyl acrylate) (PMA) connects the branching subunits. This facile methodology can provide a diversity of dendritic macromolecular topologies and will ultimately provide the means to the development of self‐organizable dendritic macromolecules. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3940–3948, 2009  相似文献   

18.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is used to synthesize complex polymer architectures. In this work, we demonstrate the control of this reaction at 25 °C between polystyrene (PSTY) chains through modulating the catalytic activity by varying the combinations of copper source (i.e., Cu(I)Br or copper wire), ligand (PMDETA and/or triazole ligand), and solvent (toluene or DMF). The fastest rate of CuAAC was found using Cu(I)Br/PMDETA ligand in toluene, reaching near full conversion after 15 min at 25 °C. For the same catalysts system, DMF also gave fast rates of “click” (95% conversion in 25 min). Cu(0) wire in toluene gave a conversion of 98% after 600 min, a much higher rate than that observed for the same catalyst system used in DMF. When the PSTY had a chemically bound triazole ring close to the site of reaction, the rate of CuAAC in toluene increased significantly, 97% in 180 min at 25 °C, in agreement with our previously published results. This suggests that rapid rates can be obtained using copper wire and will have direct applications to the synthesis of compound where air, removal of copper, and reuse of the copper catalyst are required. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Despite the efficiency and robustness of the widely used copper‐catalyzed 1,3‐dipolar cycloaddition reaction, the use of copper as a catalyst is often not attractive, particularly for materials intended for biological systems. The use of photo‐initiated thiol‐ene as an alternative “click” reaction to synthesize “model networks” is investigated here. Poly(N‐isopropylacrylamide) precursors were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and were designed to have trithiocarbonate moieties as end groups. This structure design provides opportunity for subsequent end‐group modifications in preparation for thiol‐ene “click.” Two reaction routes have been proposed and studied to yield thiol and ene moieties. The advantages and disadvantages of each reaction path were investigated to propose a simple but efficient route to prepare copper‐free “click” hydrogels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4626–4636  相似文献   

20.
A bulk step‐growth polymerization of multifunctional azides and alkynes through the copper (I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction is described. The polymerization kinetics of two systems containing different diynes, bisphenol E diyne (BE‐diyne)/bisphenol A bisazide (BA‐bisazide) and tetraethylene glycol diyne (TeEG‐diyne)/BA‐bisazide, are evaluated by differential scanning calorimetry (DSC), shear rheology, and thermogravimetric analysis. The effects of catalyst concentration on reaction kinetics are investigated in detail, as are the thermal properties (glass transition and decomposition temperatures) of the formed polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4093–4102, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号