首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel fluorine containing siloxane monomer, namely, 4‐trifluoromethylphenylmethyl cyclosiloxane ( PF3 ) and mixed cyclosiloxane including both 4‐trifluoromethylphenylmethyl siloxane ( P ) unit and trifluoropropyl siloxane ( F ) unit were successfully synthesized in this study. Furthermore, their series including vinyl‐terminated copolymers with different compositions were synthesized. The microstructures of copolymers were investigated by 1H NMR, 29Si NMR, 19F NMR, Fourier transform infrared spectroscopy, and differential scanning calorimetry (DSC). The results of characterizations confirmed that the copolymers exhibited random microstructure. Moreover, the analysis of the result of DSC also revealed that the copolymers had a low glass transition temperature. The thermogravimetric analysis indicated that poly(4‐trifluoromethylphenylmethyl)siloxane ( PPF3 ) exhibited higher thermal stability than conventional fluorosilicones rubber ( FSR ). The dynamic mechanical analysis showed that the damping factors of these copolymers were greater than 0.3 in a wide range of temperature. The mass swelling ratios were less than 5.5% when the samples were immersed in No. 3 jet fuel for a month. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1023–1031  相似文献   

2.
Thin plasma polymer films were deposited from several liquid monomers (mainly siloxane‐type monomers) in a low‐temperature cascade arc torch (CAT) reactor. The effects of monomer structures and plasma parameters on internal stress in the films were experimentally studied. By appropriately adjusting these factors, the internal stress in the film was reduced nearly two orders of magnitude from 109 to 107 dyn/cm2. It was noted that the polymer films prepared from siloxane‐type monomers showed lower internal stress than their hydrocarbon counterpart. Fourier transform‐infrared spectroscopy (FTIR) studies indicated that a large amount of Si O Si structure from siloxane monomers, which are very flexible bonds, was preserved in the resultant plasma polymers. Ellipsometry results suggested that the internal stress can be qualitatively correlated with the refractive index of the plasma polymer film. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1577–1587, 1999  相似文献   

3.
A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB2‐type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer‐bearing multihydroxyl end‐groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI–TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of 1H NMR and 13C NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high‐moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [η] and the Mark–Houwink exponent α were remarkably lower compared with their linear analogs, because of their branched nature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4309–4321, 2007  相似文献   

4.
Phosphonate‐functionalized polysiloxanes have been prepared with a new siloxane/phosphonate monomer. The reaction of 3‐chloropropylmethyldimethoxysilane with trimethylphosphite or triethylphosphite produces several new monomers containing pendant phosphonate groups. Copolymerization with dimethyldimethoxysilane has produced polymers soluble in most organic solvents. The acid hydrolysis of the phosphoryl esters has produced hydrophilic siloxane polymers containing phosphonic acid groups. The thermal properties of the polymers and several related small molecules have been compared with thermogravimetric analysis. Both the monomers and the resulting polymers have been characterized with 1H, 13C, 31P, and 29Si NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 48–59, 2003  相似文献   

5.
In the presence of small amounts of 2,2‐dialkyl‐, 2,2,3‐trialkyl‐, or 2,2,3,3‐tetraalkyl substituted epoxides such as isobutylene oxide, 1,2‐limonene oxide, and 2,2,3,3,‐tetramethyl oxirane, the photoinitiated cationic ring‐opening polymerizations of 3,3‐disubstituted oxetanes are dramatically accelerated. The acceleration affect was attributed to an increase in the rate of the initiation step of these latter monomers. Both mono‐ and disubstituted oxetane monomers are similarly accelerated by the above‐mentioned epoxides to give crosslinked network polymers. The potential for the use of such “kick‐started” systems in applications such as coatings, adhesives, printing inks, dental composites and in three‐dimensional imaging is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2934–2946  相似文献   

6.
Anionic polymerization technique has been utilized to synthesize a bilaterally sulfur‐functionalized polystyrene, SCH3‐polystyrene‐SH. The synthesis scheme consists of (1) initiation of 4‐vinylbenzylmethyl sulfide with sec‐butyllithium to form a living sulfur‐containing initiator, (2) polymerization of styrene, and (3) termination of growing polystyrene chain with ethylene sulfide. The resulting bilaterally sulfur‐functionalized polystyrene is used to make polystyrene/gold nanoparticles (AuNPs) nanocomposite with AuNPs formed in situ in polymer solution through reduction of AuClO4. The effects of the polymer/Au molar ratio as well as the molecular weight of polymer on the size and dispersion of formed AuNPs have been studied, and the superiority of bilaterally functionalized polymer to unilaterally functionalized polymer has been demonstrated. The polystyrene/AuNPs composite has been characterized by GPC, 1H‐NMR, 13C‐NMR, EDS, TEM, UV‐Vis, and DSC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1268–1277  相似文献   

7.
Ester‐free silane and siloxane‐based thiol monomers were successfully synthesized and evaluated for application in thiol‐ene resins. Polymerization reaction rates, conversion, network properties as well as degradation experiments of those thiol monomers in combination with triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TATT) as ene component were performed and compared with formulations containing the commercially available mercaptopropionic ester‐based thiol pentaerythritol tetra‐3‐mercaptopropionate. Kinetic analysis revealed appropriate reaction rates and conversions reaching 90% and higher. Importantly, storage stability tests of those formulations clearly indicate the superiority of the synthesized mercaptans compared with pentaerythritol tetra‐3‐mercaptopropionate/TATT resins. Moreover, photocured samples containing silane‐based mercaptans provide higher glass transition temperatures and withstand water storage without a significant loss in their network properties. This behavior together with the observed excellent degradation resistance of photocured silane‐based thiol/TATT formulations make these multifunctional mercaptans interesting candidates for high‐performance applications, such as dental restoratives and automotive resins. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 418–424  相似文献   

8.
Novel monomers 2‐(N‐methylacrylamido)ethylphosphonic acid, 6‐(N‐methylacrylamido)hexylphosphonic acid, 10‐(N‐methylacrylamido)decylphosphonic acid, and 4‐(N‐methylacrylamidomethyl)benzylphosphonic acid have been prepared in good yields for use in dental adhesives. They have been fully characterized by 1H‐NMR, 13C‐NMR, 31P ‐ NMR, and by HRMS. All monomers are hydrolytically stable in aqueous solution. Free radical homopolymerizations of these monomers have been carried out in solution of ethanol/water (2.5/1:v/v), using 2,2′‐azo(2‐methylpropionamidine) dihydrochloride (AMPAHC) as initiator. They lead to homopolymers in moderate to excellent yields. Structure of the polymers has been confirmed by SEC/MALLS and 1H‐NMR spectra. The photopolymerization behavior of the synthesized monomers with N,N′‐diethyl‐1,3‐bis(acrylamido)propane has been investigated by DSC. New self‐etch primers, based on these acrylamide monomers, have been formulated. Dentin shear bond strength measurements have shown that primers based on (N‐methylacrylamido)alkylphosphonic acids assure a strong bond between the tooth substance and a dental composite. Moreover, the monomer with the longest spacer group provides the highest shear bond strength. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7074–7090, 2008  相似文献   

9.
A new controllable approach to synthesize hyperbranched poly(siloxysilanes) via hydrosilylation of A2‐ and B′Bx‐type monomers was developed in this work. A2 monomers (dimethylbis(dimethylsiloxy)siloxane and tetramethyldisiloxane), B′Bx monomers (methylvinyldiallylsilane and vinyltriallylsilane), and the resultant hyperbranched poly(siloxysilanes) were well characterized using FTIR, 1H NMR, 13C NMR, 29Si NMR, and SEC/MALLS. The In situ FTIR results indicate that the controllable polymerization can be carried out quickly and the reaction process was obviously performed in two stages. At the first stage, silicon hydride selectively reacts with vinyl silane groups, which produces intermediate structures with one Si? H and two (or three) allyl groups. Consequently, at the second stage, these intermediates act as new AB2 (or AB3) type monomers and continue to be self‐polymerized to generate hyperbranched polymers. By this novel controllable approach, molecular weights and their polydispersity of the resulted hyperbranched poly(siloxysilanes) can be conveniently regulated via adjusting the process parameters, such as feeding ratio of two monomers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2708–2720, 2008  相似文献   

10.
Functional poly(diene sulfone)s are prepared by the radical alternating copolymerization of 1,3‐diene monomers containing an ester substituent with sulfur dioxide. Methyl 3,5‐hexadienoate (MH) and methyl 5,7‐octadienoate (MO) with both an alkylene spacer and a terminal diene structure are suitable to produce a high‐molecular‐weight copolymer in a high yield, while the copolymerization of 5,7‐nonadienoic acid, ethyl 2,4‐pentadienoate, and ethyl 4‐methyl‐2,4‐pentadienoate including either an alkylene spacer or a terminal diene structure lead to unsuccessful results. The 13C NMR chemical shift values of MH and MO suggest a high electron density at their reacting α‐carbon for exhibiting a high copolymerization reactivity. Fluorene‐containing diene monomers, 9‐fluorenyl 3,5‐hexadienoate (FH) and 9‐fluorenyl 5,7‐octadienoate (FO), are also prepared and copolymerized with sulfur dioxide. The thermal and optical properties of the poly(diene sulfone)s containing the methyl and fluorenyl ester substituents in the side chain are investigated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1000–1009  相似文献   

11.
A new green solvent, cyclopentyl methyl ether (CPME), is used for the first time in solvent mixtures for the successful supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of both activated and non‐activated monomers. The SARA ATRP of methyl acrylate (MA), glycidyl methacrylate (GMA), styrene (Sty), and vinyl chloride (VC) in CPME‐based mixtures is studied and presents similar features to those reported in the literature using other SARA ATRP systems. Moreover, CPME‐based mixtures are suitable solvents for the controlled SARA ATRP of MA using different SARA agents, such as Fe(0), Cu(0), or Na2S2O4. The chemical structure and the retention of the chain‐end functionality of the polymers are confirmed by 1H NMR and MALDI‐TOF analyses and the preparation of a well‐defined PMA‐b‐PVC‐b‐PMA triblock copolymer. The method reported here presents an additional improvement in the search for new ecofriendly ATRP systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2722–2729  相似文献   

12.
This study reports an application of trichloroethanol (TCE) as a bifunctional initiator for the synthesis of block copolymers (BCPs) by organocatalyzed ring‐opening polymerization (OROP) and atom transfer radical polymerization (ATRP). TCE was employed to synthesize a low dispersity poly (valerolactone) macroinitiator, which was subsequently used for the ATRP of tert‐butyl methacrylate. While it is known that TCE can serve as an initiator in ATRP, the ability to induce polymerization under OROP is reported for the first time. The formation of well‐defined BCPs was confirmed by gel permeation chromatography and 1H NMR. Computational studies were performed to obtain a molecular‐level understanding of the ring‐opening polymerization mechanism involving TCE as initiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 563–569  相似文献   

13.
This article describes the use of cobalt‐mediated catalytic chain transfer in aqueous solution under fed conditions for the preparation of macromonomers of acidic, hydroxy, and zwitterionic functional monomers. Use of a batch reaction leads to hydrolysis of catalyst, a mixture of mechanisms and poor control of the reaction. A feed process is described that adds catalyst as a solution in monomer over the course of the reaction. The feed process is applied to a range of monomers of methacrylic acid ( 2 ), 2‐aminoethyl methacrylate hydrochloride ( 3 ), 2‐hydroxyethyl methacrylate ( 4 ), 2‐methacryloxyethyl phosphoryl choline ( 5 ), glycerol monomethyl methacrylate ( 6 ), and 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐D ‐glucofuranose ( 7 ). Use of the feed process for water‐soluble monomers in conjunction with 1 as a catalytic chain‐transfer agent gives high‐conversion, > 90%, water‐soluble macromonomers. The number‐average molecular mass (Mn was determined by integration of the 1H NMR spectrum comparing the vinylic end group with the remainder of the backbone. Pseudo‐Mayo plots were constructed by measuring the Mn at high conversion as a function of [monomer]/[catalyst] to give observed chain‐transfer constants of 1120, 958, and 1058 for 4, 6, and 2, respectively. All products were obtained as relatively high‐solid, homogeneous, low‐viscosity aqueous solutions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2378–2384, 2001  相似文献   

14.
An enzymatic one‐pot route in bulk was used to synthesize tetraallyl ether (tAE) functional oligomers based on divinyl adipate, 1,4‐butanediol and trimethylolpropane diallyl ether. By using lipase B from Candida antarctica as catalyst and varying the stoichiometric ratio of monomers, it was possible to reach targeted molecular weights (from 1300 to 3300 g mol?1) of allyl‐ether functional polyesters. The enzyme catalyzed reaction reached completion (>98% conversion based on all monomers) within 24 h at 60 °C, under reduced pressure (72 mbar) resulting in ~90% yield after filtration. The tAE‐functional oligoesters were photopolymerized, without any purification other than removal of the enzyme by filtration, with thiol functional monomers (dithiol, tetrathiol) in a 1:1 ratio thiol‐ene reaction. The photo‐initiator, 2,2‐dimethoxy‐2‐phenylacetophenone, was used to improve the rate of reaction under UV light. High conversions (96–99% within detection limits) were found for all thiol‐ene films as determined by FT‐Raman spectroscopy. The tAE‐functional oligoesters were characterized by NMR, MALDI, and SEC. The UV‐cured homopolymerized films and the thiol‐ene films properties were characterized utilizing DSC and DMTA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
A series of four pairs of bismaleimide and bisfuran monomers were combined to make thermally reversible linear polymers. The monomers were prepared using diamines having different spacer chemistries, n‐octyl, cyclohexyl, phenyl, and ethylenedioxy, such that a relatively constant spacer dimension among the four monomers was achieved. Heating of the bismaleimide/bisfuran couples resulted in low‐viscosity, easily processable liquids. Subsequent cooling to room temperature resulted in the formation of hard films, with the rate of hardening varying significantly within the series of compounds. The rate and degree of polymerization were determined using 1H NMR spectroscopy and were both found to be dependent on the chemistry of the spacer group, as was the film rheology, which was measured using nanoindentation. Adhesion of the polymers was quantified by measurement of their tensile adhesive strength, and this was also found to be spacer dependent. Polymerization reversibility was verified using 1H NMR spectroscopy. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5056–5066  相似文献   

16.
New polyazomethines have been synthesized by the reaction between 2,5‐dihydroxy‐1,4‐benzoquinone and siloxane diamines differing by the siloxane sequence length. A dimer has also been prepared as a model compound. The products were characterized by spectral (FTIR and 1H‐NMR) and elemental analyses, GPC, viscosity measurements, solubility tests, and transmission electron microscopy (TEM). The different properties have been investigated by adequate techniques: thermal (DSC and TGA), spectral (UV–vis and fluorescence spectroscopy), redox (Differential Pulse Voltammetry). pH‐sensitivity and metal complexing ability were also evaluated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1862–1872, 2008  相似文献   

17.
Well‐defined glycidyl methacrylate (GMA) based di‐ and triblock copolymers, with self‐activation and self‐initiation behaviors by incorporation of 2‐(diethylamino) ethyl methacrylate (DEA) blocks, were synthesized via ambient temperature atom transfer radical polymerization (ATRP). The stability of the GMA pendant oxirane rings in tertiary amine environments at ambient temperature was investigated. More importantly, both self‐activation behavior in oxirane ring opening addition reaction and self‐initiation behavior in post‐cure oxirane ring opening crosslinking of these block copolymers were evidenced by 1H NMR studies. The results demonstrated that the reactivity of pendent oxirane rings was strongly dependant on the nucleophilicity and steric hindrance of tertiary amine moieties and temperature. This facilitated the synthesis of well‐defined block copolymers of GMA and DEA via sequential monomer addition ATRP, particularly for polymerization of GMA monomer at ambient temperature. Moreover, these one‐component GMA based block polymers have novel self‐activation and self‐initiation properties, rendering some potential applications in both enzyme immobilization and GMA‐based thermosetting materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2947–2958, 2007  相似文献   

18.
The thiol–ene radical addition reaction has been successfully used to synthesize polyphosphazene derivatives. Poly[bis(allylamino)phosphazene] with pendant allyl groups was reacted with different thiol reagents under UV irradiation. These thiol reagents include 1‐pentanethiol, 3‐mercaptopropionic acid, 3‐mercapto‐1,2‐propane‐diol, and 2,3,4,6‐tetra‐O‐acetyl‐1‐thio‐β‐D ‐glucopyranose. 1H NMR analyses confirm that the allyl polyphosphazene can be quantitatively modified by the mercaptans. In total, 100% conversion of the allyl groups was reached in <60 min toward the first three mercaptans, whereas about 80% conversion of the allyl groups was reached after 120‐min reaction toward the thioglucose. This method is a facile route for the synthesis of functional polyphosphazenes without the needs for protection/deprotection procedures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Three novel dental monomers containing phosphonic acid groups ( 1a and 2a , based on diethyl amino(phenyl)methylphosphonate and 3a based on diethyl 1‐aminoheptylphosphonate) were synthesized in two steps: the reaction of α‐aminophosphonates with acryloyl chloride (for monomers 1a and 3a ) or methacryloyl chloride (for 2a ) to give monomers with phosphonate groups, and the hydrolysis of phosphonate groups by using trimethyl silylbromide. Their (and the intermediates') structures were confirmed by FTIR, 1H, 13C, and 31P NMR spectroscopy. All the monomers dissolve well in water (1<pH<2) and are hydrolytically stable. Their homo‐ and copolymerizations with 2‐hydroxyethyl methacrylate (HEMA) and HEMA/glycerol dimethacrylate were investigated with photo‐DSC. Thermal polymerization of the new monomers in water or in ethanol/water solution was investigated, giving polymers in good yields. X‐ray diffraction results showed only dicalcium phosphate dehydrate formation upon interaction of 1a ‐ 3a with hydroxyapatite indicating its strong decalcification and that monomer‐Ca salts are highly soluble. Some results were also compared to those with a bisphosphonic acid‐containing methacrylamide ( 4a ) previously reported; and the influence of monomer structure on polymerization/adhesive properties is discussed. These properties, especially hydrolytic stability and good rates of polymerization, make these new monomers suitable candidates as components of dental adhesive mixtures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 511–522  相似文献   

20.
The highly modular Ugi four‐component reaction (Ugi‐4CR) was used to directly obtain polymers of high molar mass bearing aromatic residues in the backbone. By using at least two bifunctional monomers, the Ugi‐4CR can be employed to synthesize polymers through a polycondensation under mild conditions in the absence of catalysts. This highly versatile approach allows the creation of vast libraries of molecules by a comparably small pool of compounds. We investigated the six different possible types of the Ugi four‐component polymerization (Ugi‐4CP) to generate polyamides using commercially available monomers without further purification. After substantial adjustments of reaction parameters, we were able to obtain a polymer of high molar mass, albeit only for one out of the six types of the Ugi‐4CP. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1680–1686  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号