首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Acid‐catalyzed disproportionation of cyclic nitroxyl radicals R2NO? includes the half‐reactions of their oxidation to oxoammonium cations R2NO+ and reduction to hydroxylamines R2NOH. For many nitroxyl radicals, this reaction is characterized by its ~100% reversibility. Quantitative characteristics of acid–base and redox properties of the whole redox triad may be obtained from research of kinetics and equilibrium of this reaction. Here, we have examined the kinetics for the disproportionation of twenty piperidine‐, pyrroline‐, pyrrolidine‐, and imidazoline nitroxyl radicals in aqueous H2SO4, and interpreted it in terms of the excess acidity function X. The rate‐limiting step of this reaction is R2NO? oxidation by its protonated counterpart R2NOH+?. Kinetic stability of R2NO? in acidic media depends on the basicity of nitroxyl group. This basicity is influenced predominantly by protonation of another, more basic group in radical structure, and its proximity to nitroxyl group. The discovered estimates of pK values for radical cations R2NOH+? (from ?5.8 to ?12.0) indicate a very low basicity of nitroxyl groups in all commonly used R2NO?. For the first time, a linear correlation is obtained between the one‐electron reduction potentials of oxoammonium cations and the basicity of nitroxyl groups of related radicals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Disproportionation of cyclic nitroxyl radicals (NRs) in acid solutions is of key importance for the chemistry of these compounds. Meanwhile, the data reported on the mechanism of this reaction in dilute acids are inconsistent with those on the stability of NRs in concentrated acids. Here we have examined the kinetics and stoichiometry for the disproportionation of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl ( 1 ) in aqueous H2SO4 (1.0–99.3 wt%) and found that (1) the disproportionation of 1 proceeds by the same mechanism over the entire range of acid concentrations, (2) the effective rate constant of the process exhibits a bell‐shaped dependence on the excess acidity function X peaked at X = ?pK 1H+ = 5.8 ± 0.3, (3) a key step of the process involves the oxidation of 1 with its protonated counterpart 1H + yielding oxopiperidinium cation 2 and hydroxypiperidine 3 at a rate constant of (1.4 ± 0.8) × 105 M?1 · s?1, and (4) the reaction is reversible and, upon neutralization of acid, disproportionation products 2 and 3H + comproportionate to starting 1 . In highly acidic media, the protonated form 1H + is relatively stable due to a low disproportionation rate. Based on the known and newly obtained values of equilibrium constants, both the standard redox potential for the 1H + / 3 pair (955 ± 15 mV) and the pH‐dependences have been calculated for the reduction potentials of 1 and 2 to hydroxylamine 3 that is in equilibrium with its protonated 3H + and deprotonated 3 ? forms. The data obtained provide a deeper insight into the mechanism of nitroxyl‐involving reactions in chemical and biological systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The information concerning the peculiarities of the intramolecular interactions in the radical cations which is currently available is very sketchy. In this work, a new approach to the investigation of the substituent effects in N‐ and P‐centered radical cations has been developed. It is based on a consideration of the core‐electron binding energies E and ionization potentials I of the 15 series of the neutral molecules measured by photoelectron spectroscopy. Properties E and I obey the linear free energy relationship. By using the correlation analysis, in radical cations the inductive, resonance, and polarizability effects were first established to be in operation. The polarizability effect is caused by the charge on the radical cation centers N?+ and P?+. The contribution of this effect ranges from 10 to 55%. In the radical cations containing the moieties with N?+?X and P?+?X bonds, the standard resonance constants σR and σ of the substituents X are of limited utility. An understanding of the substituent effects may give a better insight into the mechanisms of both: radical ions and heterolytic reactions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Herein, we report the synthesis, electrochemical, and computational evaluation of six 2‐substituted imidazolium bromides and six 2‐substituted imidazolium triflates. All final compounds were obtained in 2 or fewer synthetic steps from inexpensive starting materials and display a single, irreversible electrochemical reduction. The reduction potentials span a range greater than 1 V depending on the electron withdrawing power of the 2‐substituent. Imidazolium bromides such as Bn2(H)ImBr reduce with E1/2 = ?2.70 V vs Fc/Fc+, whereas the electron‐withdrawing Br‐containing analog Bn2(Br)ImBr reduces at only ?1.58 V vs Fc/Fc+. The reduction potential of imidazolium bromides obeys a linear free energy relationship to σm Hammett constants, whereas imidazolium triflates correlate better with the σp Hammett constants. These results indicate that the stabilizing effect of the 2‐substituent is anion‐sensitive, changing from induction to resonance upon exchanging bromide for triflate. Predicted electron affinities from density functional theory–optimized structures of imidazolium cations and reduced species more closely match experimental data for the triflates, suggesting that a triflate anion does not electronically perturb the imidazolium core as much as a bromide. Taken together, these data highlight the dual modularity of imidazolium salts by changing both 2‐substituent and anion.  相似文献   

5.
Kinetic and thermodynamic (formal potential) data relating to the synthetically useful Li/Li+ couple in tetrahydrofuran (THF) solvent at a range of temperatures (196–295 K) are reported. Formal potentials, have been measured versus the standard reference electrode, in THF. At 295 K the following data have been obtained using a mathematical model to simulate the electro‐deposition (metal deposition and growth kinetics) processes of lithium (Li) on a platinum microelectrode; a of ?3.48 ± 0.005 V, = ?9.2 (±0.5) × 10?4 V K?1, the standard electrochemical rate constant, k0 = 1 (± 0.1) × 10?4 cm s?1, transfer coefficient, α = 0.57 ± 0.03 and diffusion coefficient, D = 8.7 ± 0.1 × 10?6 cm2 s?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Solute–solvent hydrogen bonding affects reactivity and other properties of dissolved species. In self‐associated media, because of cooperativity and solvent reorganization, the thermodynamic functions of solute bonding with bulk solvent can be different from those of bimolecular solute–solvent complexes. Using available experimental data on the Gibbs free energies of solvation in aliphatic alcohols and water, we have determined the energies of solute–solvent hydrogen bonding for various proton accepting solutes. We show that the increase in the strength of hydrogen bonds because of the cooperative effect is strong for bonding with bulk water and significantly less so with bulk aliphatic alcohols. The hydrogen bonding Gibbs free energies for the same solute with bulk water and alcohol are correlated, but they correlate poorly with the energies of formation of the corresponding bimolecular solute–solvent complexes. Thus, the traditional hydrogen bond basicity scales, based on data for bimolecular complexes, do not correctly describe the thermodynamics of hydrogen bonding with self‐associated solvents. Our results may help to define a separate solute basicity scale for associated media. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A giant electric field (E) induced strain of ε = 0.60% has been observed for Na0.5Bi0.5TiO3–5.6%BaTiO3 single crystals under E = 20 kV/cm at 130 °C. In‐situ X‐ray diffraction (XRD) revealed that this induced transition was between pseudocubic and tetragonal structures. Our work provides a potential alternative to lead‐based piezoelectric materials. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Rapid isomerization of pi‐complex intermediates results in the formation of multiple isomers of alkyl aromatics during AlCl3‐catalyzed reactions between linear olefins and aromatic rings. The authors present results of a kinetic study of reactions between p‐xylene, 1‐dodecene, and linear tetradecenes. Product distributions are well predicted based on a model of reversible pi‐complex isomerization. Surprisingly, no double bond isomerization was observed in the linear olefins: All isomerization occurred in the pi‐complexes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The thermal decomposition reaction of diethylketone triperoxide (DEKT) ca. 0.02 M was studied in binary mixtures of acetone–toluene and acetone–1‐propanol at 150 °C. Products of DEKT thermolysis in solution, detected by GC analysis, were diethylketone, bibenzyl and butane. The reactions were explored by GC at different solvent compositions and in each case the reactions followed a pseudo first order kinetic law, up to at least 90% peroxide conversion. The rate coefficient value of the reaction is affected by the solvent properties, showing an increase in the kobs values with increases in the polarity of the solvent mixture in acetone–toluene systems. Changes in the rate coefficient values are probably caused by the presence of the apolar toluene solvent, which dominates the preferential solvation around the DEKT molecule through non‐specific interactions. In acetone–1‐propanol mixtures the solvation effect is slightly dominated by the specific interactions between the 1‐propanol and a polar intermediate specie represented by the biradical, initially formed. The rate coefficient value increases ca. 6% in the mixture with 0.1 mole fraction of 1‐propanol in comparison with the value in pure acetone; but no more changes in rate coefficient values are observed when the amount of the alcohol increases. The critical state of the reaction (intermediate biradical) is preferentially solvated by the 1‐propanol instead of acetone, but in mixtures of different composition, it is not possible to detect any effect on the reactivity for homolytic rupture of the O? O bond. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The type of specific intermolecular and interionic interactions that are established when an ionic liquid is dissolved in water was here analysed. The study of the solvatochromic response of dipolarity micro‐sensors based on Reichardt ET(30) and Kamlet–Abboud–Taft solvent scales and the application of the solvent exchange model confirmed the formation of different intersolvent complexes in binary mixtures of (water + [C4mim] [BF4]/[Br]) type. These complexes provide H‐bond or electron pairs to the polar network, respectively. Moreover, for 4‐methoxybenzenesulfonyl chloride hydrolysis reaction in the (water + [C4mim] [BF4]) system, a higher inhibition (13 times) on the kobs values was observed. Multiple linear regression analysis that allows confirming the solvent effect upon the reactive system is due to the hydrogen‐bond donor properties of intersolvent complex formed. Then, the correlation between two different solvent‐dependent processes proved to be successful. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The blue pigment as well as other materials in a blue, white and ‘gold’ 17th century Delft dish were analysed and compared to the blue pigment(s) used in a modern blue‐and‐white Delft dish, obtained from a tourist shop in Amsterdam in 2004. The ancient Delft blue pigment was compared to a commercial Delft blue powder identified as a cobalt‐doped willemite, Zn2−xCoxSiO4. The 17th century Delft pigment showed a closer correspondence to the olivine, alpha‐cobalt silicate. The pigment in the modern blue Delft dish was mainly a vanadium‐doped zircon, ZrSiO4:V4+, with small amounts of cobalt, identified by EDX analysis. The cobalt compound could, however, not be characterised here for the modern dish. The pigment in the ‘golden’ rim was identified as pyrochlore yellow, PbSnSbO6.5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Early afterglows of N2 and N2‐O2 flowing microwave discharges are characterized by optical emission spectroscopy. The N and O atom and N2(A) metastable molecule densities are determined by optical emission spectroscopy after calibration by NO titration for N‐atoms and measurements of NO and N2 band intensities for O‐atoms and N2(A) metastable molecules. By using N2 tanks with 50 and 10 ppm impurity, it is determined in the afterglow an O‐ atom impurity of 150‐200 ppm. Variations of the N and O‐atom and N2(A) metastable molecule densities are obtained in the early afterglow of N2–(9·10–5–3·10–3)O2 gas mixtures. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号