首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The copolymerization of styrene and 1,3‐butadiene (Bd) or isoprene (Ip) was carried out with half‐sandwich titanium(IV) Cp′TiCl3 catalysts (where Cp′ is cyclopentadienyl 1 , indenyl 2 , or pentamethylcyclopentadienyl 3 ) with methylaluminoxane as a cocatalyst. For the copolymerization with Bd, catalyst 3 gave the copolymers containing the highest amount of Bd among the catalysts used. The resulting copolymers were composed of a styrene–Bd multiblock sequence. High melting points were observed in the copolymers prepared with catalyst 1 . The structures of hydrogenated poly(styrene‐co‐Bd) were studied by 13C NMR spectroscopy, and the long styrene sequence length was detected in the copolymers prepared with catalyst 1 . For styrene/Ip copolymerization, random copolymers were obtained. Among the used catalysts, catalyst 1 gave the copolymers containing the highest amount of Ip. The copolymers prepared with catalyst 1 showed a steep melting point depression with increasing Ip content because of the high ratio of 1,4‐inserted Ip units and/or the low molecular weights of the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 939–946, 2003  相似文献   

2.
Anionic polymerization of isoprene initiated by an alkyl lithium containing a silyl ether protected hydroxyl functionality followed by termination with ethylene oxide gave α,ω‐functionalized polyisoprene with narrow molecular weight distribution and prescribed molecular weight in high yield. Deprotection resulted in α,ω‐hydroxyl polyisoprene (HO‐PI‐OH) that was reacted with triethylaluminium to form the corresponding aluminium alkoxide macroinitiator. The macroinitiator was used for the controlled polymerization of lactide to yield polylactide‐block‐polyisoprene‐block‐polylactide triblock copolymers with narrow molecular weight distributions and free of homopolymer (HO‐PI‐OH) contamination. Microphase separation in these novel triblock copolymers was confirmed by SAXS and DSC.  相似文献   

3.
The synthesis of polypeptide‐containing block copolymers combining N‐carboxyanhydride (NCA) ring‐opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was used. Well‐defined polypeptide macroinitiators were obtained from γ‐benzyl‐L ‐glutamate NCA, O‐benzyl‐serine NCA, and N‐benzyloxy‐L ‐lysine. Subsequent ATRP macroinitiation from the polypeptides resulted in higher than expected molecular weights. Analysis of the reaction products and model reactions confirmed that this is due to the high frequency of termination reactions by disproportionation in the initial phase of the ATRP, which is inherent in the amide initiator structure. In some cases selective precipitation could be applied to remove unreacted macroinitiator to yield well‐defined block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

4.
Polymers consisting of poly(acrylic acid) (PAA) and statistical poly[(acrylic acid)‐co‐(tert‐butylacrylate)] (P(AA‐cotBA)), attached to both extremities of Jeffamine® (D series based on a poly(propylene oxide) (PPO) with one amine function at each end) using atom transfer radical polymerization (ATRP) are presented in this article. An original bifunctional amide‐based macroinitiator was first elaborated from Jeffamine®. tBA polymerization was subsequently initiated from this macroinitiator. This polymerization occurs in a well‐controlled manner leading to narrow molecular weights distribution. Amphiphilic copolymers were finally obtained after complete or partial hydrolysis of the PtBA blocks into PAA. The control of the partial hydrolysis of tBA units, conducted in a concentrated HCl/tetrahydrofuran mixture, is demonstrated. The properties of the triblock copolymers were preliminary investigated in aqueous solution by absorbance, DLS measurements and SEC/MALS/DV/DRI analysis as a function of temperature and pH modifications, providing evidences of thermo‐ and pH‐sensitive self‐assembly of the copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2606–2616  相似文献   

5.
Graft copolymers of ethyl cellulose with azobenzene‐containing polymethacrylates were synthesized through atom transfer radical polymerization (ATRP). The residual hydroxyl groups on ethyl cellulose were first esterified with 2‐bromoisobutyryl bromide to yield 2‐bromoisobutyryloxy groups, which was then used to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) in the presence of CuBr/N,N,N′,N″,N″‐pentamethylenetriamine (PMDETA) as catalyst and anisole as solvent. The graft copolymers were characterized by gel permeation chromatography (GPC) and 1H‐NMR. The molecular weights of the graft copolymers increased relatively to the macroinitiator, and the polydispersities were narrow. The thermal and liquid crystalline property of the graft copolymers were investigated by differential scanning calorimeter (DSC) and polarizing optical microscope (POM). Photoresponsive property was studied under the irradiation of UV–vis light in THF solution. The graft copolymers have potential applications, including sensors and optical materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1653–1660, 2007  相似文献   

6.
Various copper‐based catalyst systems and reaction conditions were studied in the graft copolymerization of N,N‐dimethylacrylamide (DMAam) with a cellulose‐based macroinitiator by controlled radical polymerization. The cellulose macroinitiator with degree of substitution DS = 0.44 was synthesized from dissolving softwood pulp in a LiCl/DMAc solution. The graft copolymerizations of DMAam, using the cellulose macroinitiator and various copper‐based catalyst systems, were then carried out in DMSO solutions. The copolymerization kinetics was followed by 1H NMR. Water‐soluble cellulose‐g‐PDMAam copolymers were comprehensively characterized by ATR‐FTIR and 1H NMR spectroscopies and SEC analyses. DLS and steady‐shear viscosity measurements revealed that when the DPgraft of the cellulose‐g‐PDMAam copolymer is high enough, the copolymer forms a more compact structure in water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Ethylene polymerization and its copolymerization with 1‐hexene with a set of supported metallocene catalysts were studied. As a carrier, the complex of magnesium chloride with tetrahydrofuran, which was previously pretreated with a triisobutylaluminium (TIBA), was used. The investigated metallocene compound differs in the metal type (Zr or Ti), the nature of the alkyl substituent in the cyclopentadienyl ring, and the type of ligand (Cp or Ind). The effect of catalyst composition on the anchored metal content, catalyst activity, comonomer reactivity, and polymer properties was investigated. The results obtained with supported catalysts were compared with those obtained with their homogeneous counterparts under the same (co)polymerization conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5562–5570, 2005  相似文献   

8.
The polymerization kinetics of 5‐[2‐{2‐(2‐methoxyethoxy)ethyoxy}‐ethoxymethyl]‐5‐methyl‐trimethylene carbonate (TMCM‐MOE3OM) synthesized using the organocatalyst 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) were studied and compared to those with the commonly used catalyst/initiator for ring‐opening polymerization of cyclic carbonates and esters, stannous 2‐ethylhexanoate. Further, the utility of each of these catalysts in the copolymerization of TMCM‐MOE3OM with trimethylene carbonate (TMC) and l ‐lactide (LLA) was examined. Regardless of conditions with either catalyst, homopolymerization of TMCM‐MOE3OM yielded oligomers, having number average molecular weight less than 4000 Da. The resultant molecular weight was limited by ring‐chain equilibrium as well as through monomer autopolymerization. Interestingly, autopolymerization of TMC was also achieved with DBU as the catalyst. Copolymerization with TMC using stannous 2‐ethylhexanoate as the catalyst yielded random copolymers, while diblock copolymers were formed by copolymerization with LLA. With DBU as the catalyst, copolymers with LLA could not be formed, while blocky copolymers were formed with TMC. These findings should be useful in the incorporation of this monomer in the design of polymer biomaterials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 544–552  相似文献   

9.
Well‐defined amphiphilic pentablock copolymers Siy‐(EGx‐FAz)2 composed of polysiloxane (Si), polyethylene glycol (EG), and perfluorohexylethyl polyacrylate (FA) blocks are synthesized by ATRP of FA monomer starting from a difunctional bromo‐terminated macroinitiator. Diblock copolymers EGx‐FAz are also synthesized as model systems. The block copolymers are used, either alone or blended with a PDMS matrix in varied loadings, to prepare antibiofouling coatings. Angle‐resolved XPS and contact angle measurements show that the coating surface is highly enriched in fluorine content but undergoes reconstruction after contact with water. Protein adsorption experiments with human serum albumin and calf serum highlight that diblock copolymers resist protein adhesion better than do pentablock copolymers. Blending of the pentablock copolymer with PDMS results in increased protein adsorption. By contrast, the PDMS‐matrix coatings show high removal percentages of sporelings of the green fouling alga Ulva linza. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1213–1225  相似文献   

10.
A series of bimetallic aluminum Schiff‐base complexes have been prepared and characterized. The complexes used as catalysts were applied in the lactide polymerization to test their activities and stereoselectivities. All polymerizations are living, as evidenced by the narrow polydispersities and the good fit between calculated and found number‐average molecular weights of the isolated polymers. Isotactic enriched polylactide was obtained by using these complexes. Kinetic studies indicated that the polymerizations are both first‐ordered with respect to lactide monomer and catalyst. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1344–1352  相似文献   

11.
Densely grafting copolymers of ethyl cellulose with polystyrene and poly(methyl methacrylate) were synthesized through atom transfer radical polymerization (ATRP). First, the residual hydroxyl groups on the ethyl cellulose reacted with 2‐bromoisobutyrylbromide to yield 2‐bromoisobutyryloxy groups, known to be an efficient initiator for ATRP. Subsequently, the functional ethyl cellulose was used as a macroinitiator in the ATRP of methyl methacrylate and styrene in toluene in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst system. The molecular weight of the graft copolymers increased without any trace of the macroinitiator, and the polydispersity was narrow. The molecular weight of the side chains increased with the monomer conversion. A kinetic study indicated that the polymerization was first‐order. The morphology of the densely grafted copolymer in solution was characterized through laser light scattering. The individual densely grafted copolymer molecules were observed through atomic force microscopy, which confirmed the synthesis of the densely grafted copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4099–4108, 2005  相似文献   

12.
Crystalline nanocellulose (CNC) was grafted with poly(methyl acrylate) (PMA) to yield modified CNC that is readily dispersed in a range of organic solvents [including tetrahydrofuran, chloroform, dimethylformamide, and dimethyl sulfoxide (DMSO)], in contrast to native CNC which is dispersible primarily in aqueous solutions. First, a CNC macroinitiator with high bromine initiator density was prepared through a 1,1′‐carbonyldiimidazole‐mediated esterification reaction in DMSO‐based dispersant. MA was then grafted from the CNC macroinitiator through SET living radical polymerization (LRP) at room temperature using Cu(0) (copper wire) as the catalyst. The LRP grafting proceeded rapidly, with ~30% monomer conversion achieved within 30 min, yielding approximately six times the mass of PMA with respect to CNC macroinitiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2800–2808  相似文献   

13.
Novel water‐soluble amphiphilic block copolymers with pendant carboxylic acid groups are synthesized and used for the preparation of ionically crosslinked hydrogels. d ,l ‐Lactide (DLLA) and l ?3‐(2‐benzyloxycarbonyl)ethyl‐1,4‐dioxane‐2,5‐dione (BED) are copolymerized at different ratios via organo‐catalyzed ring‐opening polymerization using a hydroxyl‐terminated poly(ethylene glycol) (PEG–OH) macroinitiator. Dynamic light‐scattering experiments show that, at low concentrations, aqueous solutions of these PEG‐P(BED‐DLLA) copolymers form micelles and aggregates. At higher concentrations, thermo‐sensitive gels are obtained, exhibiting a reversible gel‐to‐sol transition upon a temperature increase. Ionic interactions between the COOH groups and metal ions (Cu2+ or Ca2+) are shown to significantly shift the gel–sol transition to higher temperatures. Thus, the introduction of COOH groups significantly enhances the water solubility of the amphiphilic PEG–polyester copolymer and allows additional crosslinking interactions to form functionalized hydrogels with improved physical properties, making this new class of hydrogels interesting for various applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1222–1227  相似文献   

14.
Combination of coordination polymerization and atom transfer radical polymerization (ATRP) was applied to a novel synthesis of rod‐coil block copolymers. The procedure included the following steps: (1) monoesterification reaction of ethylene glycol with 2‐bromoisobutyryl bromide yielded a α‐bromo, ω‐hydroxy bifunctional initiator, (2) CpTiCl3 (bifunctional initiator) catalyst was prepared from a mixture of trichlorocyclopentadienyl titanium (CpTiCl3) and bifunctional initiator. Coordination polymerization of n‐butyl isocyanate initiated by such catalyst provided a well‐defined macroinitiator, poly(n‐butyl isocyanate)‐Br (PBIC‐Br), and (3) ATRP method of vinyl monomers using PBIC‐Br provided rod (PBIC)‐coil block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4037–4042, 2007  相似文献   

15.
A synthesis of a new macromolecular class of vinylene‐arylene copolymers with double‐decker silsesquioxane in the main chain is presented. Two transition‐metal‐catalyzed processes, which is silylative‐coupling copolycondensation (SCC) and ADMET copolymerization of divinyl‐substituted double‐decker silsesquioxanes (DDSQ‐2SiVi) with selected diolefins, are reported to be highly efficient tools for the formation of stereoregular copolymers containing DDSQ‐silylene‐vinylene‐arylene units. The copolymeric products are studied in terms of their structural, thermal, and mechanical properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1044–1055  相似文献   

16.
A series of amphiphilic conetworks (APCNs) is synthesized through crosslinking of well‐defined tri‐arm star diblock copolymers via atom transfer radical polymerization. A new three‐arm initiator is synthesized to initiate the polymerization of 2‐hydroxyethyl methacrylate (HEMA) via “core‐first” method. The resulting star HEMA homopolymers with well‐defined molecular weight and narrow polydispersity are used as macroinitiator to incorporate allyl methacrylate to get the star diblock copolymers. Then, the precursors with allyl pendant groups are fully crosslinked with polyhydrosiloxanes through hydrosilylation. The so‐prepared APCNs exhibit unique properties of microphase separation of hydrophilic (HI) and hydrophobic (HO) phases with small channel size, a variable swelling capacity, excellent biocompatibility, and outstanding mechanical strength (2 ± 0.5 MPa). The properties of APCNs depend on the ratio of HI to HO, which can be regulated via precise synthesis of the star diblock copolymers. The APCNs show well‐controlled drug release to choline theophyllinate, suggesting a promising intelligent drug carrier for controlled release. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2537–2545  相似文献   

17.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

19.
A dual initiator (4‐hydroxy‐butyl‐2‐bromoisobutyrate), that is, a molecule containing two functional groups capable of initiating two polymerizations occurring by different mechanisms, has been prepared. It has been used for the sequential two‐step synthesis of well‐defined block copolymers of polystyrene (PS) and poly(tetrahydrofuran) (PTHF) by atom transfer radical polymerization (ATRP) and cationic ring‐opening polymerization (CROP). This dual initiator contains a bromoisobutyrate group, which is an efficient initiator for the ATRP of styrene in combination with the Cu(0)/Cu(II)/N,N,N,N,N″‐pentamethyldiethylenetriamine catalyst system. In this way, PS with hydroxyl groups (PS‐OH) is formed. The in situ reaction of the hydroxyl groups originating from the dual initiator with trifluoromethane sulfonic anhydride gives a triflate ester initiating group for the CROP of tetrahydrofuran (THF), leading to PTHF with a tertiary bromide end group (PTHF‐Br). PS‐OH and PTHF‐Br homopolymers have been applied as macroinitiators for the CROP of THF and the ATRP of styrene, respectively. PS‐OH, used as a macroinitiator, results in a mixture of the block copolymer and remaining macroinitiator. With PTHF‐Br as a macroinitiator for the ATRP of styrene, well‐defined PTHF‐b‐PS block copolymers can be prepared. The efficiency of PS‐OH or PTHF‐Br as a macroinitiator has been investigated with matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy, gel permeation chromatography, and NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3206–3217, 2003  相似文献   

20.
A new method to prepare the polypropylene (PP) macroinitiator for controlled radical polymerization was described. Bromination of terminally-unsaturated PP was carried out by using N-bromosuccinimide and 2,2′-azobis(isobutyronitrile) to give a brominated PP (PP-Br), that has allylic bromide moieties at or near the chain ends. Thus, the obtained PP-Br was successfully used as a macroinitiator for radical polymerization of styrene, methyl methacrylate, and n-butyl acrylate using a copper catalyst system. From 1H NMR analysis, it was confirmed that the chain extension polymerization was certainly initiated from allylic bromide moieties with high efficiency, leading to the PP-based block copolymers linking the polar segment. From differential scanning calorimetry, it was observed that peak melting temperature of block copolymers was higher than that of PP-Br and the obtained PP-PS block copolymers with different compositions of each segment demonstrated the unique morphological features due to the microphase separation between both segments. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 812–823, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号