首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New diketopyrrolopyrrole (DPP)‐containing conjugated polymers such as poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐1‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(1,6)PY)) and poly(2,5‐bis(2‐octyldodecyl)‐3‐(5‐(pyren‐2‐yl)thiophen‐2‐yl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) (P(DTDPP‐alt‐(2,7)PY)) were successfully synthesized via Suzuki coupling reactions under Pd(0)‐catalyzed conditions. P(DTDPP‐alt‐(2,7)PY), incorporating 2,5‐bis(2‐octyldodecyl)‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione (DTDPP) at the 2,7‐position of a pyrene ring showed a lower band‐gap energy (E. = 1.65 eV) than the 1,6‐substituted analog, P(DTDPP‐alt‐(1,6)PY) (E = 1.71 eV). The energies of the molecular frontier orbitals of the substituted polymers were successfully tuned by changing the anchoring position of DTDPP from the 1,6‐ to the 2,7‐position of the pyrene ring. An organic thin‐film transistor fabricated using the newly synthesized P(DTDPP‐alt‐(2,7)PY), as a semiconductor material exhibited a maximum mobility of up to 0.23 cm2 V?1 s?1 (Ion/off ~ 106), which was much larger than that obtained using P(DTDPP‐alt‐(1,6)PY). This distinction is attributed to morphological differences in the solid state arising from differences between the geometrical configurations of DTDPP and the pyrene ring. In addition, the organic phototransistor devices made of P(DTDPP‐alt‐(2,7)PY) showed interesting photoinduced enhancement of drain current when irradiating the excitation light whose intensity is very small. Based on the photoinduced effect on IDS, photocontrolled memory could be realized under the variation of gate voltages. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Well‐defined peptide‐poly(ε‐caprolactone) (Pep‐PCL) biohybrids were successfully synthesized by grafting‐from ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using designed amine‐terminated sequence‐defined peptides as macroinitiators. MALDI‐TOF‐MS and 1H NMR analyses confirmed the successful attachment of peptide to the PCL chain. The gel permeation chromatography (GPC) measurement showed that the Pep‐PCL biohybrids with controllable molecular weights and low polydispersities (PDI <1.5) were obtained by this approach. The aggregation of Pep‐PCL hybrid molecules in THF solution resulted in the formation of micro/nanospheres as confirmed through FESEM, TEM, and DLS analyses. The circular dichroism study revealed that the secondary structure of peptide moiety was changed in the peptide‐PCL biohybrids. The crystallization and melting behavior of Pep‐PCL hybrids were somewhat changed compared with that of neat PCL of comparable molecular weight as revealed by DSC and XRD measurements. In Pep‐PCL biohybrids, extinction rings were observed in the PCL spherulites, in contrast with the normal spherulite morphology of the neat PCL. There was a substantial decrease (4–5 folds) in the spherulitic growth rate after the incorporation of peptide moiety at the end of PCL chain as measured by polarizing optical microscopy. Pseudomonas lipase catalyzed enzymatic degradation was studied for Pep‐PCL hybrids and neat PCL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Poly(ε‐caprolactone)‐grafted‐lignin (PCL‐g‐lignin) copolymers with 2 to 37 wt % lignin are employed to study the effect of lignin on the morphology, nucleation, and crystallization kinetics of PCL. Lignin displays a nucleating action on PCL chains originating an intersecting lamellar morphology. Lignin is an excellent nucleating agent for PCL at low contents (2–5 wt %) with nucleation efficiency values that are close to or >100%. This nucleating effect increases the crystallization and melting temperature of PCL under nonisothermal conditions and accelerates the overall isothermal crystallization rate of PCL. At lignin contents >18 wt %, antinucleation effects appear, that decrease crystallization and melting temperatures, reduce crystallinity degree, hinder annealing during thermal fractionation and significantly retard isothermal crystallization kinetics. The results can be explained by a competition between nucleating effects and intermolecular interactions caused by hydrogen bonding between PCL and lignin building blocks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1736–1750  相似文献   

4.
To investigate thermogelling behavior, in this study, we prepared a methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) diblock copolymer (MPC) with varying hydrophobic poly(ε‐caprolactone) (PCL) lengths and an MPC featuring a zwitterionic sulfobetaine (MPC‐ZW) at the chain end of the PCL segment. The terminal zwitterionic sulfobetaine was stoichiometrically modified to the terminal MPC diblock copolymer. The introduction of the zwitterionic end group lowered the crystallization enthalpies of the PCL block segments and increased the solubility of the diblock copolymer. The MPC and MPC‐ZW copolymers thus obtained formed translucent emulsions at room temperature when prepared as 20 wt %. When the temperature was increased above room temperature, MPC and MPC‐ZW exhibited a sol‐to‐gel phase transition. The phase transition and the gelation time of MPC and MPC‐ZW were affected by the length of the hydrophobic segments and the zwitterionic end group. Furthermore, introducing a zwitterionic end group into the PCL segment altered the onset temperature of gelation. Thus, we conclude that zwitterionic end groups introduced into PCL segments of distinct lengths could serve as key determinants in the thermogelling behavior of copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2185–2191  相似文献   

5.
Supramolecular inclusion complexes (ICs) involving polyhedral oligomeric silsesquioxane (POSS) capped poly(?‐caprolactone) (PCL) and α‐cyclodextrin (α‐CD) were investigated. POSS‐terminated PCLs with various molecular weights were prepared via the ring‐opening polymerization of ?‐caprolactone (CL) with 3‐hydroxypropylheptaphenyl POSS as an initiator. Because of the presence of the bulky silsesquioxane terminal group, the inclusion complexation between α‐CD and the POSS‐capped PCL was carried out only with a single end of a PCL chain threading inside the cavity of α‐CD, which allowed the evaluation of the effect of the POSS terminal groups on the efficiency of the inclusion complexation. The X‐ray diffraction results indicated that the organic–inorganic ICs had a channel‐type crystalline structure. The stoichiometry of the organic–inorganic ICs was quite dependent on the molecular weights of the POSS‐capped PCLs. With moderate molecular weights of the POSS‐capped PCLs (e.g., Mn =3860 or 9880), the stoichiometry was 1:1 mol/mol (CL unit/α‐CD), which was close to the literature value based on the inclusion complexation of α‐CD with normal linear PCL chains with comparable molecular weights. When the PCL chains were shorter (e.g., for the POSS‐capped PCL of Mn = 1720 or 2490), the efficiency of the inclusion complexation decreased. The decreased efficiency of the inclusion complexation could be attributed to the lower mobility of the bulky POSS group, which restricted the motion of the PCL chain attached to the silsesquioxane cage. This effect was pronounced with the decreasing length of the PCL chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1247–1259, 2007  相似文献   

6.
Organic–inorganic hybrid brushes comprised of macrocyclic oligomeric silsesquioxane (MOSS) and poly(ε‐caprolactone) (PCL) were synthesized via the ring‐opening polymerization of ε‐caprolactone (CL) with cis‐hexa[(phenyl) (2‐hydroxyethylthioethyldimethylsiloxy)]cyclohexasiloxane as the initiator. The MOSS macromer bearing hydroxyl groups was synthesized via the thiol‐ene radical addition reaction between cis‐hexa[(phenyl)(vinyldimethylsiloxy)]cyclohexasiloxane and β‐mercaptoethanol. The organic–inorganic PCL cyclic brushes were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gel permeation chromatography (GPC). These MOSS–PCL brushes were then used to prepare the supramolecular inclusion complexes with α‐cyclodextrin (α‐CD). The X‐ray diffraction (XRD) indicates that the organic–inorganic inclusion complexes (ICs) have a channel‐type crystalline structure. It is noted that the molar ratios of CL unit to α‐CD for the organic–inorganic ICs are quite dependent on the lengths of the PCL chains bonded to the silsesquioxane macrocycle. While the PCL chains were short, the efficiency of inclusion complexation was significantly decreased. The decreased efficiency could be attributed to the repulsion of the adjacent PCL chains bonded to the silsesquioxane macrocycle and the restriction of the bulky silsesquioxane macrocycle on the motion of PCL chains; this effect is pronounced with decreasing the length of the PCL chains. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

8.
We report the synthesis of linear‐ and brush‐type poly(?‐caprolactone) (PCL) networks and investigate their thermal, mechanical, and shape memory behavior. Brush‐PCLs are prepared by ring‐opening metathesis polymerization (ROMP) of a norbornenyl‐functionalized ?‐caprolactone macromonomer (MM‐PCL) of different molecular weights. The linear analog, diacrylate end‐functionalized PCL (linear‐PCL), having comparable molecular weight of side chain of brush‐PCL is also synthesized. These polymers are thermally cured by a radical initiator in the presence of poly(ethylene glycol) diacrylate crosslinker. Thermal and linear viscoelastic properties as well as shape memory performance of the resulting PCL networks are investigated, and are significantly impacted by the PCL architecture. Therefore, our work highlights that tailoring macromolecular architecture is useful strategy to manipulate thermal, mechanical, and resulting shape memory properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3424–3433  相似文献   

9.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
A series of thermosensitive ABA type triblock poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(ε‐caprolactone) (PCL‐PNIPAAm‐PCL) copolymers with different molecular weights were synthesized by the combination of ring opening polymerization and reversible addition‐fragmentation chain transfer (RAFT) polymerization. The critical micelle concentrations (CMCs) of the resulted four triblock copolymers in aqueous solution were determined to be 33.8, 39.8, 35.5, and 41.7 mg/L, respectively, by fluorescence spectroscopy using pyrene as a fluorescence probe. Optical absorption measurements showed that the lower critical solution temperatures (LCSTs) of the copolymers were 35.8, 36.2, 35.2, and 36.2 °C, respectively, in distilled water, and 33.9, 34.2, 33.3, 34.6 °C, respectively, in PBS (pH = 6.8, I = 0.1). Transmission electron microscopy (TEM) showed that the self‐assembled micelles exhibited a well‐defined spherical shape with diameter of around 100 nm. The drug‐loaded PCL‐PNIPAAm‐PCL micelles displayed thermosensitive controlled release behaviors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3048–3057, 2008  相似文献   

11.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

12.
The well‐defined, thermosensitive and biodegradable graft copolymers, poly(N‐isopropylacrylamide)‐b‐[2‐hydroxyethyl methacrylate‐poly(ε‐caprolactone)]n (PNIPAAm‐b‐(HEMA‐PCL)n) (n = 3 or 9), were synthesized by combining reversible addition‐fragmentation chain transfer polymerization and macromonomer method. The copolymers were able to self‐assemble into micelles in water with low critical micellar concentration and demonstrated temperature sensitivity with a lower critical solution temperature at around 36 °C. Transmission electron microscopy shows that the micelles exhibit a nanosized spherical morphology within a size range of 30–100 nm. The PNIPAAm‐b‐(HEMA‐PCL)3 copolymer exhibited biodegradation and low cytotoxicity. The paclitaxel‐loaded PNIPAAm‐b‐(HEMA‐PCL)3 micelles displayed thermosensitive controlled release behavior, which indicates potential as drug carriers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5354–5364, 2007  相似文献   

13.
Novel poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) bearing pendant hydrophobic γ‐(carbamic acid benzyl ester) groups (PECB) and hydrophiphilic amino groups (PECN) were synthesized based on the functionalized comonomer γ‐(carbamic acid benzyl ester)‐ε‐caprolactone (CABCL). The thermal gelation behavior of the amphiphilic copolymer aqueous solutions was examined. The phase transition behavior could be finely tuned via the pendant groups, and an abnormal phenomenon occurred that the sol–gel transition temperature shifted to a higher temperature for PECB whereas a lower temperature for PECN. The micelles percolation was adopted to clarify the hydrogel mechanism, and the effect of the pendant groups on the micellization was further investigated in detail. The results demonstrated that the introduction of γ‐(carbamic acid benzyl ester) pendant groups significantly decreased the crystallinity of the copolymer micelles whereas amino pendant groups made the micelles easy to aggregate. Thus, the thermal gelation of PEG/PCL aqueous solution could be finely tuned by the pendant groups, and the pendant groups modified PEG/PCL hydrogels are expected to have great potential biomedical application. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2571–2581  相似文献   

14.
Poly(N‐vinyl pyrrolidone)‐block‐poly(N‐vinyl carbazole)‐block‐poly(N‐vinyl pyrrolidone) (PVP‐b‐PVK‐b‐PVP) triblock copolymers were synthesized via sequential reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process. First, 1,4‐phenylenebis(methylene)bis(ethyl xanthate) was used as a chain transfer agent to mediate the radical polymerization of N‐vinyl carbazole (NVK). It was found that the polymerization was in a controlled and living manner. Second, one of α,ω‐dixanthate‐terminated PVKs was used as the macromolecular chain transfer agent to mediate the radical polymerization of N‐vinyl pyrrolidone (NVP) to obtain the triblock copolymers with various lengths of PVP blocks. Transmission electron microscopy (TEM) showed that the triblock copolymers in bulks were microphase‐separated and that PVK blocks were self‐organized into cylindrical microdomains, depending on the lengths of PVP blocks. In aqueous solutions, all these triblock copolymers can self‐assemble into the spherical micelles. The critical micelle concentrations of the triblock copolymers were determined without external adding fluorescence probe. By analyzing the change in fluorescence intensity as functions of the concentration, it was judged that the onset of micellization occurred at the concentration while the FL intensity began negatively to deviate from the initial linear increase with the concentration. Fluorescence spectroscopy indicates that the self‐assembled nanoobjects of the PVP‐b‐PVK‐b‐PVP triblock copolymers in water were capable of emitting blue/or purple fluorescence under the irradiation of ultraviolet light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1852–1863  相似文献   

15.
In this article, we studied the effect of hyaluronic acid (HA) on thermogelation of poly(caprolactone‐b‐ethylene glycol‐b‐caprolactone) (PCL‐PEG‐PCL) aqueous solution designed as an injectable system for prevention of postsurgical tissue adhesion. The PCL‐PEG‐PCL triblock copolymers were simply synthesized by ring‐opening polymerization of ε‐caprolactone (CL) in the presence of PEG as a polymeric initiator. The synthesized copolymers were confirmed by proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Possible interactions between HA and PCL‐PEG‐PCL triblock copolymers in the blend were evaluated by Fourier‐transform infrared spectroscopy (FTIR). The effect of HA on the micellization of PCL‐PEG‐PCL aqueous solution was investigated by dye solubilization method and electrophoretic lighting scattering (ELS) spectrophotometer. Also, the thermogelling behaviors of the PCL‐PEG‐PCL triblock copolymers in the presence of HA and their mechanism were investigated by test tube inverting method, 13C‐NMR, 1H‐NMR, Advanced Rheometic Expansion System (ARES), and differential scanning calorimetry (DSC). The PCL‐PEG‐PCL/HA blend aqueous solutions undergo the sol‐gel‐sol transition in response to an increase in temperature (10–60 °C) and the gelation of the PCL‐PEG‐PCL was rather accelerated by HA. Presumably, this accelerated gelation seems to arise from the attractive interactions between them and the effect of chain confinement in the micelle corona region. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3629–3637, 2008  相似文献   

16.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

17.
In this study, we investigated the melting and crystallization behavior of polyhedral oligomeric silsesquioxane (POSS)‐capped poly(ε‐caprolactone) PCL with various lengths of PCL chains by means of X‐ray diffraction and differential scanning calorimetry. This organic–inorganic macromolecule possesses a tadpole‐like structure in which the bulky POSS cage is the “head” whereas PCL chain the “tail”. The novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PCL. The POSS‐terminated PCL displayed the enhanced equilibrium melting points compared to the control PCL. Both the overall crystallization rate and the spherulitic growth rate of the POSS‐terminated PCLs increased with increasing the concentration of POSS (or with decreasing length of PCL chain in the hybrids). The analysis of Avrami equation shows that the crystallization of the POSS‐terminated PCL preferentially followed the mechanism of spherulitic growth with instantaneous nuclei. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2201–2214, 2007  相似文献   

18.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

19.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Well‐defined in‐chain norbornene‐functionalized poly(ethylene oxide)‐b‐poly(?‐caprolactone) copolymers (NB‐PEO‐b‐PCL) were synthesized from a dual clickable containing both hydroxyl‐ and alkyne‐reactive groups, namely heterofunctional norbornene 3‐exo‐(2‐exo‐(hydroxymethyl)norborn‐5‐enyl)methyl hexynoate. A range of NB‐PEO‐b‐PCL copolymers were obtained using a combination of orthogonal organocatalyzed ring‐opening polymerization (ROP) and click copper‐catalyzed azide–alkyne cycloaddition (CuAAC). Ring‐opening metathesis polymerization (ROMP) of NB‐PEO‐b‐PCL macromonomers using ruthenium‐based Grubbs’ catalysts provides comb‐like and umbrella‐like graft copolymers bearing both PEO and PCL grafts on each monomer unit. Mikto‐arm star A2B2 copolymers were obtained through a new strategy based on thiol–norbornene photoinitiated click chemistry between 1,3‐propanedithiol and NB‐PEO‐b‐PCL. The results demonstrate that in‐chain NB‐PEO‐b‐PCL copolymers can be used as a platform to prepare mikto‐arm star, umbrella‐, and comb‐like graft copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 4051–4061  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号