首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New donor–π–acceptor (D–π–A) type conjugated copolymers, poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(4‐octylthiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐tTz), and poly[(4,8‐bis((2‐hexyldecyl)oxy)benzo[1,2‐b:4,5‐b′]dithiophene)‐alt‐(2,5‐bis(6‐octylthieno[3,2‐b]thiophen‐2‐yl)thiazolo[5,4‐d]thiazole)] (PBDT‐ttTz) were synthesized and characterized with the aim of investigating their potential applicability to organic photovoltaic active materials. While copolymer PBDT‐tTz showed a zigzagged non‐linear structure by thiophene π‐bridges, PBDT‐ttTz had a linear molecular structure with thieno[3,2‐b]thiophene π‐bridges. The optical, electrochemical, morphological, and photovoltaic properties of PBDT‐tTz and PBDT‐ttTz were systematically investigated. Furthermore, bulk heterojunction photovoltaic devices were fabricated by using the synthesized polymers as p‐type donors and [6,6]‐phenyl‐C71‐butyric acid methyl ester as an n‐type acceptor. PBDT‐ttTz showed a high power conversion efficiency (PCE) of 5.21% as a result of the extended conjugation arising from the thienothiophene π‐bridges and enhanced molecular ordering in the film state, while PBDT‐tTz showed a relatively lower PCE of 2.92% under AM 1.5 G illumination (100 mW/cm2). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1978–1988  相似文献   

2.
Two donor‐π‐acceptor (D‐π‐A) type naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole (NT)‐based conjugated copolymers (CPs), namely, PBDT‐TT‐DTNT‐HD and PBDT‐TT‐DTNT‐OD, containing different side chain length (2‐hexyldecyl, HD and 2‐octyldodecyl, OD) anchoring to thiophene π‐bridge between the two‐dimensional (2D) 5‐((2‐butyloctyl)thieno[3,2‐b]thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐TT) unit and NT moiety are developed and fully characterized. The resultant two copolymers exhibited broader absorption in wide range of 300–820 nm and obviously deepened EHOMO of approximately −5.50 eV. The effects of side chain length on film‐forming ability, absorption, energy levels, aggregation, dielectric constant (ɛr), mobility, morphology, and photovoltaic properties are further systematically investigated. It was found that the side chain length had little impact on solution‐processability, absorption, energy levels, and aggregation in CB solution of resultant CPs. However, tinily increasing side chain length promoted to form the more ordered structure of neat polymer film even if the corresponding ɛr decreased. As a result, the side‐chain‐extended PBDT‐TT‐DTNT‐OD:PC71BM‐based device achieved 32% increased FF than that of PBDT‐TT‐DTNT‐HD:PC71BM and thus the PCE was significantly raised from 3.99% to 5.21%, which were benefited from 2 times higher SCLC hole mobility, more favorable phase separation, and improved exciton dissociation. These findings could provide an important and valuable insight by side chain modulation for achieving efficient PSCs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2059–2071  相似文献   

3.
Six alternating conjugated copolymers ( PL1 – PL6 ) of benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thiophene, containing electron‐withdrawing oxadiazole (OXD), ester, or alkyl as side chains, were synthesized by Stille coupling reaction. The structures of the polymers were confirmed, and their thermal, optical, electrochemical, and photovoltaic properties were investigated. The introduction of conjugated electron‐withdrawing OXD or formate ester side chain benefits to decrease the bandgaps of the polymers and improve the photovoltaic performance due to the low steric hindrance of BDT. Bulk heterojunction polymer solar cells (PSCs) were fabricated based on the blend of the as‐synthesized polymers and the fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) in a 1:2 weight ratio. The maximum power conversion efficiency of 2.06% was obtained for PL5 ‐based PSC under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

5.
Three novel alternating copolymers of thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and triisopropylsilylacetylene‐functionalized anthracene were prepared via Suzuki polymerization. Various solubilizing substituents were attached to the TPD moiety in order to ascertain the impact they have upon the optical, electrochemical, and thermal properties of the resulting polymers. All copolymers showed good solubility and thermal stability with decomposition temperatures in excess of 300°C. Optical properties revealed that PTATPD(O), PTATPD(DMO), and PTATPD(BP) displayed optical energy gaps in excess of 2.0 eV. It is speculated that steric repulsion between solubilizing groups on repeat units along polymer chains reduces their planarity and decreases their electronic conjugation. The amorphous nature of the polymers was confirmed with differential scanning calorimetry and powder X‐ray diffraction. The highest occupied molecular orbital levels of the three polymers are unaffected by the different solubilizing chains. However, they exert some influence over the lowest unoccupied molecular orbital (LUMO) levels with PTATPD(BP) and PTATPD(O) displaying the lowest LUMO levels (?3.4 eV). In contrast, PTATPD(DMO) displayed the highest LUMO level (?3.3 eV). © 2015 The Authors. Polymers for Advanced Technologies Published by John Wiley & Sons Ltd.  相似文献   

6.
Two alternating medium band gap conjugated polymers (PBDT‐TPTI and PDTBDT‐TPTI) derived from 4,8‐bis(4,5‐dioctylthien‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐T) or 5,10‐bis(4,5‐didecylthien‐2‐yl)dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:4,5‐b′]dithiophene (DTBDT‐T) with pentacyclic aromatic lactam of N,N‐didodecylthieno[2′,3′:5,6]pyrido[3,4‐g]thieno[3,2‐c]‐iso‐quinoline‐5,11‐dione (TPTI), are synthesized and characterized. The comparative investigation of the photostabilities of the copolymers revealed that the PDTBDT‐TPTI film exhibited the comparable photostability in relative to P3HT. Meanwhile, the inverted photovoltaic cells (i‐PVCs) from the blend films of PBDT‐TPTI and/or PDTBDT‐TPTI with PC71BM, in which poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] were used as cathode modifying interlayer, presented higher power conversion efficiencies (PCEs) of 5.98% and 6.05% with photocurrent response ranging from 300 nm to 650 nm in contrast with the PCEs of 4.48% for the optimal inverted PVCs from P3HT/PC71BM under AM 1.5 G 100 mW/cm2. The PCEs of the i‐PVCs from PBDT‐TPTI and PDTBDT‐TPTI were improved to 7.58% and 6.91% in contrast to that of 0.02% for the P3HT‐based i‐PVCs, and the photocurrent responses of the devices were extended to 300–792 nm, when the ITIC was used as electron acceptor materials. The results indicate that the PBDT‐TPTI and PDTBDT‐TPTI can be used as the promising alternatives of notable P3HT in the photovoltaic application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 85–95  相似文献   

7.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

8.
Here, a conjugated polymer VTTPD based on thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) and dithiophene with vinyl as linker is synthesized and characterized. Electrochemical and optical studies indicate the LUMO and HOMO energies of the polymer are −3.70 and −5.39 eV. Theoretical calculation with density functional theory suggests that H‐bonds are formed between the TPD carbonyl (O) and its neighboring vinyl (H) which benefit the planarity and π‐conjugation of the polymer backbone. Bottom contact bottom gate organic field effect transistor devices based on VTTPD are fabricated and examined in air. After annealing at 160 °C, the devices exhibit excellent performance of μh = 0.4 cm2 V−1 s−1, Ion/off = 106, Vth within −10 V to −5 V. Thin film morphologies before and after the annealing process are also investigated with XRD and AFM.

  相似文献   


9.
Electron‐deficient heterocycle 1,3,4‐oxadiazole is first introduced to the 2‐position of thieno[3,4‐b]thiophene (TT) to construct a new building block 2‐(thieno[3,4‐b]thiophen‐2‐yl)‐5‐(alkylthio)‐1,3,4‐oxadiazole (TTSO) with alkylthio chain. The polymer PBDT–TTSO based on TTSO and benzodithiophene (BDT) exhibits a deep lying highest occupied molecular orbital (HOMO) energy level of −5.32 eV and low‐bandgap of 1.62 eV. The power conversion efficiency (PCE) of 5.86% is obtained with a relatively high V OC of 0.74 V, a J SC of 13.1 mA cm−2, and FF of 60.5%. Furthermore, as S atom in thioether can be oxidized easily, the optoelectronic properties of PBDT–TTSO treated with different oxidants are preliminary investigated. Interestingly, the oxidation products still maintain high PCE with reduction less than 30%. This work demonstrates a new method to regulate HOMO energy levels by introducing electron‐deficient aromatic heterocyclic moiety.

  相似文献   


10.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
Compared with benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (BTT), an extended π‐conjugation fused ring derivative, dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (DTBTT) has been designed and synthesized successfully. For investigating the effect of extending conjugation, two wide‐bandgap (WBG) benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based conjugated polymers (CPs), PBDT‐DTBTT, and PBDT‐BTT, which were coupled between alkylthienyl‐substituted benzo[1,2‐b:4,5‐b′]dithiophene bistin (BDT‐TSn) and the weaker electron‐deficient dibromides DTBTTBr2 and BTTBr2 bearing alkylacyl group, were prepared. The comparison result revealed that the extending of conjugated length and enlarging of conjugated planarity in DTBTT unit endowed the polymer with a wider and stronger absorption, more ordered molecular structure, more planar and larger molecular configuration, and thus higher hole mobility in spite of raised highest occupied molecular orbital (HOMO) energy level. The best photovoltaic devices exhibited that PBDT‐DTBTT/PC71BM showed the power conversion efficiency (PCE) of 2.73% with an open‐circuit voltage (VOC) of 0.82 V, short‐circuit current density (JSC) of 6.29 mA cm?2, and fill factor (FF) of 52.45%, whereas control PBDT‐BTT/PC71BM exhibited a PCE of 1.98% under the same experimental conditions. The 38% enhanced PCE was mainly benefited from improved absorption, and enhanced hole mobility after the conjugated system was extended from BTT to DTBTT. Therefore, our results demonstrated that extending the π‐conjugated system of donor polymer backbone was an effective strategy of tuning optical electronic property and promoting the photovoltaic property in design of WBG donor materials.  相似文献   

12.
13.
A series of novel poly(thienylene vinylene) derivatives (PTVs), P20‐P24 , with imide substituents were designed and synthesized by palladium‐catalyzed Stille coupling polymerization, wherein the imide substituent density was decreased gradually, which allowed us to explicitly study the effect of electron‐deficient substituent on the optical, electrochemical, and photovoltaic properties of the PTVs. All of the four polymers showed broad absorption bands with optical bandgaps between1.66 and 1.78 eV. By reducing density of electron‐deficient imide group, the LUMO energy levels of the polymers could be tuned gradually from ?3.75 to ?3.43 eV, with HOMO levels upshifted from ?5.64 to ?5.16 eV. Bulk heterojunction solar cells with the polymers as donor and PC71BM as acceptor demonstrated very different excitons dissociation behavior. With decreasing the imide‐fused unit density, the open‐circuit voltage (VOC) values in the devices decreased from 0.78 to 0.62 V, whereas the short‐circuit currents (JSC) increased from 0 to 2.26 mA cm?2 and then decreased to 1.01 mA cm?2. By adjusting the electron‐withdrawing imide substituent density, power conversion efficiency of the PTVs‐based solar cells can be increased to four times, reached 0.86%. To the best of our knowledge, this is the first systematic study of the relationship between molecular energy level and photovoltaic properties of PTVs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4975–4982  相似文献   

14.
Silole‐containing conjugated polymers ( P1 and P2 ) carrying methyl and octyl substituents, respectively, on the silicon atom were synthesized by Suzuki polycondensation. They show strong absorption in the region of 300–700 nm with a band gap of about 1.9 eV. The two silole‐containing conjugated polymers were used to fabricate polymer solar cells by blending with PC61BM and PC71BM as the active layer. The best performance of photovoltaic devices based on P1 /PC71BM active layer exhibited power conversion efficiency (PCE) of 2.72%, whereas that of the photovoltaic cells fabricated with P2 /PC71BM exhibited PCE of 5.08%. 1,8‐Diiodooctane was used as an additive to adjust the morphology of the active layer during the device optimization. PCE of devices based on P2 /PC71BM was further improved to 6.05% when a TiOx layer was used as a hole‐blocking layer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A new conjugated polymer (PBAIIDTT) based on bay‐annulated indigo and indacenodithieno[3,2‐b]thiophene was designed, synthesized, and characterized. PBAIIDTT shows strong absorption in 400–500 and 600–800 nm, and its HOMO and LUMO energy levels are −5.45 eV and −3.65 eV, respectively. In organic field‐effect transistors, the polymer exhibits a relatively high hole mobility of 0.39 cm2 V−1 s−1. PBAIIDTT was added to poly(3‐hexylthiophene) (P3HT) and phenyl‐C61‐butyric acid methyl ester (PC61BM) based organic solar cells. Ternary blend solar cells with 10% PBAIIDTT show an increased short circuit current density due to the broadened photocurrent generated in the near‐infrared region, and a power conversion efficiency of 3.78%, which is higher than that of the P3HT:PC61BM binary control devices (3.33%). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 213–220  相似文献   

16.
基于1,2,4-三氮唑衍生物的共轭聚合物的合成及其光伏性能   总被引:1,自引:0,他引:1  
李新炜  赵斌  曹镇财  沈平  谭松庭 《化学学报》2012,70(23):2433-2439
以缺电子的1,2,4-三氮唑衍生物作为拉电子结构单元(A), 以富电子的噻吩或苯并二噻吩衍生物作为推电子结构单元(D), 通过Stille偶联聚合的方法, 合成了三种主链型D-A(推-拉电子结构)的交替共聚物PT-TZ, PB-TZ和PB-TTZT. 不同富电子结构单元可使其聚合物表现出不同的光物理性能和光伏性能. 嵌入较多的噻吩单元, 可有效增大聚合物主链的共轭长度, 拓宽其吸收光谱, 因此, 聚合物PB-TTZT的光伏性能明显优于另外两种聚合物. 以三种聚合物分别作为给体材料, 以PC61BM作为受体材料, 制备了聚合物太阳能电池(PSCs), 其中, 基于PB-TTZT的PSCs器件在AM 1.5 G模拟太阳光条件下的光电转换效率为1.18%.  相似文献   

17.
An efficient and practical one‐pot procedure for the direct chemoselective synthesis of isobenzofuran and spiro[isobenzofuran‐1,2′‐pyrrole] derivatives is developed via oxidative cleavage of 3a,8b‐dihydroxyindeno[1,2‐b]pyrrol‐4‐ones with Pb(OAc)4 at room temperature.  相似文献   

18.
Pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (DPPD)‐based large band gap polymers, P(BDT‐TDPPDT) and P(BDTT‐TDPPDT), are prepared by copolymerizing electron‐rich 4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) unit with novel electron deficient 2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione (TDPPDT) unit. The absorption bands of polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) cover the region from 300 to 600 nm with an optical band gap of 2.11 eV and 2.04 eV, respectively. The electrochemical study illustrates that the highest occupied/lowest unoccupied molecular orbital energy levels of P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) are ?5.39 eV/?3.28 eV and ?5.44 eV/?3.40 eV, respectively. The single layer polymer solar cell (PSC) fabricated with a device structure of ITO/PEDOT:PSS/P(BDT‐TDPPDT) or P(BDTT‐TDPPDT):PC70BM+DIO/Al offers a maximum power conversion efficiency (PCE) of 6.74% and 6.57%, respectively. The high photovoltaic parameters such as fill factor (~72%), open circuit voltage (Voc, ~0.90 V), incident photon to collected electron efficiency (~76%), and PCE obtained for the PSCs made from polymers P(BDT‐TDPPDT) and P(BDTT‐TDPPDT) make them as promising large band gap polymeric candidates for PSC application. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3564–3574  相似文献   

19.
A series of novel fused tetracyclic benzo[4,5]imidazo[1,2‐a]thiopyrano[3,4‐d]pyrimidin‐4(3H)‐one derivatives were synthesized via the reaction of aryl aldehyde, 2H‐thiopyran‐3,5(4H,6H)‐dione, and 1H‐benzo[d]imidazol‐2‐amine in glacial acetic acid. This protocol features mild reaction conditions, high yields and short reaction time.  相似文献   

20.
New pyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP) derivatives carrying 3,4‐ethylenedioxy‐thiophenylphenyl (EDOT‐phenyl) substituent groups in the 3‐ and 6‐position, or in the 2‐ and 5‐position of the DPP chromophore were synthesised and electrochemically polymerised. The properties of the polymers were investigated using cyclic voltammetry and UV/Vis absorption spectroscopy. It was found that the optical and electronic properties differ greatly between the two polymers. Materials with EDOT‐phenyl groups in the 3‐ and 6‐positions represent conjugated polymers with a low oxidation potential and reversible electrochromic properties, whereas the polymer with EDOT‐phenyl groups in the 2‐ and 5‐positions is non‐conjugated and possesses a high oxidation potential and irreversible redox behaviour.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号