首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A consecutive radical addition‐coupling reaction induced by spin‐trapping agent is applied to produce degradable multisegmented polymer using α,ω‐dibromo polymer as a precursor. The macroradical generated by single electron transfer process catalyzed by Cu/PMDETA from α,ω‐dibromo polymer can be efficiently captured by 2‐methyl‐2‐nitrosopropane (MNP), which results in nitroxide radical. The in situ formed nitroxide radical immediately undergoes cross‐coupling reaction with polymeric radical, generating block polymer bridged with alkoxyamine moiety. The consecutive radical addition‐coupling reaction generates multisegmented polymer via step‐growth mechanism. Different multisegmented polymers have been prepared from α,ω‐dibromo‐PS, PtBA, and PtBA‐PS‐PtBA. The block number of multisegmented polymers can be tailored by varying the feed ratio of α,ω‐dibromo precursor to MNP. The multisegmented polymer can be degraded in the presence of hydrogen atom donor or air, and the molecular weight distribution transformed back into shape of its original precursor as it is conjugated by alkoxyamine moieties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A consecutive radical addition‐coupling reaction involving dithioester is applied to produce thermodegradable multisegmented polymer using α,ω‐dibromo polymer as precursor. The macroradical generated by single electron transfer process promoted by Cu/ligand from α,ω‐dibromo polymer can efficiently add to ethyl dithiobenzoate, which results intermediate adduct radical. The in situ formed adduct radical immediately undergoes crosscoupling reaction with macroradical, generating segmented polymer bridged with C? S bond. The consecutive radical addition‐coupling reaction generates multisegmented polymer linked by C? S bond following step‐growth mechanism. The multisegmented polymer can be thermodegraded in the presence of hydrogen atom donor or air. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Four nitroso esters were prepared by oxidation of 4,4‐dimethyl dihydro‐1,3‐oxazine or 4,4‐dimethyl‐2‐oxazoline with two equiv of m‐chloroperoxybenzoic acid. All of them can be applied in radical addition‐coupling polymerization to produce periodic polymer together with introduction of ester group at side chain. Compared with 2‐methyl‐2‐nitrosopropane, 2‐nitroso‐2‐methyl‐4‐acetoxypentane and 2‐methyl‐2‐nitrosopropyl hexanoate present good stability at high temperature up to 70 °C and can result polymer with high molecular weight. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 810–815  相似文献   

4.
Reversible addition–fragmentation chain transfer (RAFT) mediated radical polymerizations of allyl methacrylate and undecenyl methacrylate, compounds containing two types of vinyl groups with different reactivities, were investigated to provide hyperbranched polymers. The RAFT agent benzyl dithiobenzoate was demonstrated to be an appropriate chain‐transfer agent to inhibit crosslinking and obtain polymers with moderate‐to‐high conversions. The polymerization of allyl methacrylate led to a polymer without branches but with five‐ or six‐membered rings. However, poly(undecenyl methacrylate) showed an indication of branching rather than intramolecular cycles. The hyperbranched structure of poly(undecenyl methacrylate) was confirmed by a combination of 1H, 13C, 1H–1H correlation spectroscopy, and distortionless enhancement by polarization transfer 135 NMR spectra. The branching topology of the polymers was controlled by the variation of the reaction temperature, chain‐transfer‐agent concentration, and monomer conversion. The significantly lower inherent viscosities of the resulting polymers, compared with those of linear analogues, demonstrated their compact structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 26–40, 2007  相似文献   

5.
The ability of thiyl radicals to add to terminal unsaturations in an efficient way made them considered being one of the click reactions. Recently, thiol‐yne addition reactions have been used extensively for the synthesis of crosslinked networks and dendrimers and postpolymerization functionalization protocols. Herein, we report a novel step‐growth type reaction for highly functional linear polymers using a monoalkyne and dithiol compound. First, we investigated the model reaction between 1‐octyne and 1‐octanethiol as well as 1,4‐butanedithiol compounds, which were initiated via self‐, thermal‐, and UV‐initiation; the UV‐initiation was found to be the most efficient method and completed within 2‐h reaction time. The same conditions were applied for the polymerization of four different functional alkynes bearing different functional groups with two dithiol compounds. All polymerizations resulted in highly functional linear polymers with number averaged molecular weights ranging from 5 to 30 kDa, except for propargylic acid and its methyl ester, where only oligomers formed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
The reaction of phenyl propynyl ether and diphenyl disulfide in the presence of 1 mol % tetrakis(triphenylphosphine)palladium as a model reaction of the polymerization of bis(4‐prop‐2‐ynyloxyphenyl) disulfide ( 1a ) gave a Z‐substituted dithioalkene. No E‐substituted dithioalkene was formed in this reaction. The palladium‐catalyzed bisthiolation polymerization of a diethynyl disulfide derivative, 1a , in benzene, was carried out to give a hyperbranched polymer ( 5a ) containing a Z‐substituted dithioalkene unit after reaction for 4 h at 70 °C. From the gel permeation chromatography analysis (chloroform, PSt standards), the number‐average and weight‐average molecular weights of 5a were found to be 8,100 and 57,000, respectively. The structure of 5a was confirmed by 1H and 13C NMR spectra. The obtained polymer was soluble in common organic solvents such as benzene, acetone, and CHCl3. Polymerization for more than 5 h gave insoluble products. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3580–3587, 2007  相似文献   

7.
Polyaddition (An + B2) reactions of 1,1,1‐tris(4‐hydoxyphenyl) ethane (THPE; A3‐type monomer), calix[4]resorcinarene (CRA[4]; A8‐type monomer), α‐cyclodextrin (α‐CD; A18‐type monomer), and β‐cyclodextrin (β‐CD; A21‐type monomer) with 1,4‐bis(4‐vinyloxy)cyclohexane (BVOC; B2‐type monomer) afforded corresponding soluble hyperbranched polyacetals. The physical properties, including solubility, thermal stability, and film‐forming ability, the ultraviolet‐induced degradation reactivity, and the solubility‐switch in an extreme ultraviolet (EUV) exposure tool indicated that poly(THPE‐co‐BVOC) and poly(CRA[4]‐co‐BVOC) are candidate next‐generation photo‐resists. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2343–2350  相似文献   

8.
The cationic ring‐opening multibranching polymerization of 2‐hydroxymethyloxetane ( 1 ) as a novel latent AB2‐type monomer was carried out using trifluoromethane sulfonic acid or trifluoroboron diethyl etherate by a slow‐monomer‐addition (SMA) method. The polymer yield of poly‐1 ranged from ca. 58–88%, which increase with the increasing monomer addition time on the SMA method. The absolute molecular weights (Mw,MALLS) and the polydispersities of poly‐1 were in the range of 8,000–43,500 and 1.45–4.53, respectively, which also increased with the increasing monomer addition time. The Mark‐Houwink‐Sakurada exponents α in 0.2 M NaNO3 aq. were determined to be 0.02–0.25 for poly‐1 , indicating that poly‐1 has compact forms in the solution because of the highly branched structure. The degree of the branching value of poly‐1 , which was calculated by Frey's equation, ranged from ca. 0.50 to 0.58, which increased with the increasing monomer addition time. The steady shear flow of poly‐1 in aqueous solution exhibited a Newtonian behavior with steady shear viscosities independent of the shear rate. The results of the MALLS, NMR, and viscosity measurements indicated that poly‐1 is composed of a highly branched structure, i.e., the hyperbranched poly (2‐hydroxymethyloxetane). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
In this contribution, we present new reduction‐cleavable hyperbranched disulfide bonds‐containing poly(ester triazole)s with limited intramolecular cyclization, which can be synthesized by the Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) of A2 monomer of dipropargyl 3,3′‐dithiobispropionate and B3 monomer of tris(hydroxymethyl)ethane tri(4‐azidobutanoate). The hyperbranched poly(ester triazole)s possess numerous terminal groups and weight‐average molecular weight up to 20,400 g mol?1 with a polydispersity index in the range 1.57–2.17. The CuAAC introduces rigid triazole units into the backbones of hyperbranched poly(ester triazole)s and reduces intramolecular cyclization, which is proved by topological analysis and 1H NMR spectroscopy. The disulfide bonds on backbones endow the reduction‐cleavable feature to the hyperbranched poly(ester triazole)s at the presence of dithiothreitol. It gives a novel and convenient methodology for the synthesis of reduction‐responsive functional polymer with controlled topologies, and the reduction‐cleavable hyperbranched poly(ester triazole)s with limited intramolecular cyclization are expected to possess potential in the application of stimuli‐responsive anticancer drug nanocarriers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2374–2380  相似文献   

10.
A series of hyperbranched polystyrene copolymers were synthesized by atom transfer radical self‐condensing vinyl copolymerization (ATR‐SCVCP) of p‐chloromethylstyrene (CMS) and styrene using the complex CuCl/2,2′‐bipyridyl as catalyst. The composition and structures of these hyperbranched polystyrene copolymers were characterized by 1H‐NMR and 13C‐NMR spectroscopy, gel permeation chromatography (GPC), and elemental analysis. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The influence of the reaction conditions, including comonomer ratios, reaction time, and polymerization temperature, on the molecular weight and degree of branching (DB) of the resulting copolymers were investigated in detail. With increasing ratios of styrene in total monomers from 10 to 90%, the resulting copolymers have number‐average molecular weights that change from 6.0 to 10.5 kDa, polydispersities from 2.96 to 4.74, and a degree of branching from 0.01 to 0.45. The experimental results indicated that the structures and properties can be controlled by adjusting the reaction conditions. The concentrations of styrene in the copolymers slightly affect the copolymer structures and Tg when they are less than 50 mol%, but have a large effect at greater concentrations. The results also show that the ATR‐SCVP reaction does not follow a complete ATRP feature, but has some characteristics of step‐growth polymerization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We present an efficient method for synthesis of block copolymer by radical addition cross‐coupling reaction between two different polymeric radicals and different double bonds. Two different monobromo polymers (P1‐Br and P2‐Br) were reacted with Cu(0)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine in the presence of ethyl dithiobenzoate or 1,1‐diphenylethylene (X) and the block copolymer (P1‐X‐P2) can be obtained with high efficiency, which cannot be prepared by normal atom transfer radical coupling of mixture of P1‐Br and P2‐Br. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2817–2823.  相似文献   

12.
13.
The first asymmetric total synthesis of (?)‐ophiodilactone A and (?)‐ophiodilactone B, isolated from the ophiuroid (Ophiocoma scolopendrina), is reported. The key features of the synthesis include the highly stereocontrolled construction of the structurally congested γ‐lactone/δ‐lactone skeleton through an asymmetric epoxidation, diastereoselective iodolactonization, and intramolecular epoxide‐opening with a carboxylic acid, and biomimetic radical cyclization of ophiodilactone A to ophiodilactone B.  相似文献   

14.
The copolymerization of divinylbenzene (DVB) and N‐isopropylacrylamide (NIPAm) with dimethyl 2,2′‐azobisisobutyrate of a concentration as high as 0.50 mol/L proceeded homogeneously without any gelation at 80 °C in N,N‐dimethylformamide, where the concentrations of DVB and NIPAm were 0.15 and 0.50 mol/L. The copolymer yield increased with time and leveled off over 50 min. Although DVB was consumed more rapidly than NIPAm, both comonomers were completely consumed in 50 min. The homogeneous polymerization system at 80 °C involved electron spin resonance‐observable propagating polymer radicals, the total concentration of which increased with time. The resulting copolymer was soluble in tetrahydrofuran, chloroform, acetone, ethyl acetate, acetonitrile, N,N‐dimethylformamide, dimethyl sulfoxide, and methanol, but insoluble in benzene, n‐hexane, and water. The copolymer showed an upper critical solution temperature (50 °C on cooling) in a methanol–water [11:3 (v/v)] mixture. Dimethyl 2,2′‐azobisisobutyrate fragments as high as 37–45 mol % were incorporated as terminal groups in the copolymers through initiation and primary radical termination. The contents of DVB and NIPAm were 10–30 mol % and 30–50 mol %, respectively. The intrinsic viscosity of the copolymer was very low (0.09 dL/g) at 30 °C in tetrahydrofuran despite high weight‐average molecular weight (1.2 × l06 by multi‐angle laser light scattering). These results indicate that the copolymer was of hyperbranched structure. By transmission electron microscopy observation, the individual copolymer molecules were visualized as nanoparticle of 6–20 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1609–1617, 2004  相似文献   

15.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

16.
The linear poly(ε–caprolacton)‐b‐hyperbrached poly(2‐((α‐bromobutyryl)oxy)ethyl acrylate) (LPCL‐b‐HPBBEA) has been successfully synthesized by simultaneous ring‐opening polymerization (ROP) of CL and self‐condensing vinyl polymerization (SCVP) of BBEA in one‐pot. The HPBBEA homopolymers were found to be formed in the polymerization because of the competitive reactions induced by initiation with bifunctional initiator, 2‐hydroxylethyl‐2′‐bromoisobutyrate (HEBiB), and inimer BBEA. The separation of LPCL‐b‐HPBBEA from the polymerization products was achieved by precipitation in methanol. With feed ratio increase of CL and BBEA to HEBiB, the molecular weights of PCL and HPBBEA blocks in the block copolymer enhanced; and the polymerization rate of CL started to decrease gradually after 12 h of polymerization, but the polymerization rate of BBEA was maintained until 24 h of polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7628–7636, 2008  相似文献   

17.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

18.
Side‐chain liquid‐crystalline polymers of 6‐[4‐(4′‐methoxyphenyl)phenoxy]hexyl methacrylate with controlled molecular weights and narrow polydispersities were prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐(2‐cyanopropyl) dithiobenzoate as the RAFT agent. Differential scanning calorimetry studies showed that the polymers produced via the RAFT process had a narrower thermal stability range of the liquid‐crystalline mesophase than the polymers formed via conventional free‐radical polymerization. In addition, a chain length dependence of this stability range was found. The generated RAFT polymers displayed optical textures similar to those of polymers produced via conventional free‐radical polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2949–2963, 2003  相似文献   

19.
The reversible addition‐fragmentation chain transfer (RAFT) copolymerization of styrene and 4‐vinylbenzyl dithiobenzoate, a RAFT‐based inimer (initiator‐monomer), is described. Controlled polymerization was achieved in bulk conditions using thermal initiation at 110 °C to give arborescent polystyrene (arbPSt). The number‐average molecular weights of the polymers increased linearly with conversion and were much higher than theoretically calculated for a linear polymerization, reaching Mn = 364,000 g/mol with Mw/Mn = 2.65. Branching analysis by NMR showed an average of 3.5 branches per chain. SEC data, which were similar to those measured in arborescent polyisobutylene, supported the architectural analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7621–7627, 2008  相似文献   

20.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号