首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation of new ring opening metathesis polymerization (ROMP) monomers using a 1,3‐dipolar cycloaddition between aryl azides and norbornadiene is described. Various norbornenetriazolines, obtained through a solvent‐and catalyst‐free reaction, can subsequently be incorporated into polymer backbones through ROMP reactions. Furthermore, thermal decomposition of the triazoline moiety can allow for further polymer functionalization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2357–2362  相似文献   

2.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

3.
The article describes synthesis and thermally triggered self‐assembly of a Poly (ethylene oxide)‐block‐poly (N‐insopropylacrylamide) (PEO‐b‐PNIPAm) in aqueous medium. At rt, the polymer remains as unimer, however, at lower critical solution temperature (LCST) of PNIPAm (32 °C), it forms a rather large undefined aggregate which at slightly elevated temperature (~40 °C) converges to well defined polymersome structure (Critical aggregation concentration = 0.45 mg/mL) with hydrodynamic diameter of 40–50 nm. By lowering the temperature, initial swelling of the compact vesicle followed by reversible disassembly to unimer was noticed. The polymersome exhibits encapsulation ability to a hydrophilic dye Calcein which can be spontaneously released by lowering the temperature below cloud point. Likewise a hydrophobic dye namely 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) can also be encapsulated and released by thermal trigger. Detail photoluminescence studies reveal ANS dye can be used as a generalized probe molecule for detecting LCST of a thermoresponsive polymer by “fluorescence on” above LCST even by cursory observation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2444–2451  相似文献   

4.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

5.
The use of a hyperbranched polymer as a building block for the synthesis of a microporous organic polymer was demonstrated. Hyperbranched polyphenylenes (HBPs) were prepared from (3,5‐dibromophenyl)boronic acid, which contained numerous unreacted bromophenyl end groups. Utilizing metal‐catalyzed coupling reactions between these functional groups, cross‐linked porous polymers were obtained. Although the HBPs did not show porosity, their cross‐linked polymers had highly porous structures with Brunauer–Emmett–Teller surface areas of up to 2030 m2/g. An insoluble porous thin film was fabricated by spin casting of a solution containing a HBP followed by Sonogashira cross‐coupling reaction. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2336–2342  相似文献   

6.
This article describes the investigation of the importance of various reaction conditions on microsyneretic pore formation during polymerization of divinylbenzene (DVB) under so‐called “solvothermal” conditions. To induce microsyneretic pore formation, the most important parameter is an unusually high dilution of monomers with a “good” porogen solvating the polymer chains. High dilution and solvation of the growing poly(DVB) chains promote the prolongation of the polymer chains rather than their interconnection by crosslinking. Consequently, when the polymer gel density reaches the point where syneresis starts, the polymer network is geometrically too extensive to be broken up into precipitating entities and, instead, porogen droplets are formed within the continuous polymer gel. The pore geometry created by microsyneresis offers high surface area in wide mesopores and hence, high capacity for supporting functional groups or reactions with much better accessibility than narrow pores between polymer microspheres produced by macrosyneresis in conventional styrenic polymer supports. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 774–781  相似文献   

7.
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547  相似文献   

8.
The free volume holes of a shape memory polymer have been analyzed considering that the empty space between molecules is necessary for the molecular motion, and the shape memory response is based on polymer segments acting as molecular switches through variable flexibility with temperature or other stimuli. Therefore, thermomechanical analysis (TMA) and positron annihilation lifetime spectroscopy (PALS) have been applied to analyze shape recovery and free volume hole sizes in gamma‐irradiated polycyclooctene (PCO) samples, as a noncytotoxic alternative to more conventional PCO crosslinked via peroxide for future applications in medicine. Thus, a first approach relating structure, free volume holes and shape memory properties in gamma‐irradiated PCO is presented. The results suggest that free volume holes caused by gamma irradiation in PCO samples facilitate the recovery process by improving movement of polymer chains and open possibilities for the design and control of the macroscopic response. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1080–1088  相似文献   

9.
In this article, a new technique for building temperature compensated microscale lasers that are based on the morphology dependent resonances phenomenon is presented. The dome shaped resonator is made with a mixture of NBA 107 UV curable polymer and rhodamine 6 g dissolved in ethanol solution. Since polymers usually exhibit linear thermal expansion and thermo‐optic coefficients that are opposite in sign but similar in order of magnitude, it is possible to compensate for temperature over the dome shaped resonator by tuning the dye concentration and the ratio between the polymer and dye solution. Experiments with dye concentration between 10?2 to 10?3 M and polymer and dye solution ratios between 1:1 and 4:1 are conducted. The sensitivity for all cases is presented, and the quality factor Q is investigated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 789–792  相似文献   

10.
Tailor‐made polymers containing specific chemical functionalities have ushered in a number of emerging fields in polymer science. In most of these next‐generation applications the focus of the community has centered upon closed‐shell macromolecules. Conversely, macromolecules containing stable radical sites have been less studied despite the promise of this evolving class of polymers. In particular, radical‐containing macromolecules have shown great potential in magnetic, energy storage, and biomedical applications. Here, the progress regarding the syntheses of open‐shell containing polymers are reviewed in two distinct subclasses. In the first, the syntheses of radical polymers (i.e., materials composed of non‐conjugated macromolecular backbones and with open‐shell units present on the polymer pendant sites) are described. In the second, polyradical (i.e., macromolecules containing stabilized radical sites either within the macromolecular backbone or those containing radical sites that are stabilized through a large degree of conjugation) synthetic schemes are presented. Thus, the state‐of‐the‐art in open‐shell macromolecular syntheses will be reported and future means by which to advance the current archetype will be discussed. By detailing the synthetic pathways possible for, and the inherent synthetic limitations of, the creation of these functional polymers, the community will be able to extend the bounds of the radical‐containing macromolecular paradigm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1875–1894  相似文献   

11.
Tuning the molecular structure is an effective strategy to modulate the electrochromic behaviors of conducting polymers. In this contribution, a novel oligoaniline‐containing polyurea ended with reactable isocyanate groups is designed and synthesized via nucleophilic polymerization. Then various functional groups such as o‐toluidine, poly(ethylene glycol) (PEG), ethoxysilane, and congo red (CR) are introduced as end groups to modulate the electrochromic performance. Hydrophilic PEG could improve the switching speed due to the rapid electrolyte ions diffusion into polymer film through the hydrophilic region. An enhanced switching stability is afforded by crosslinkable ethoxysilane end groups, ascribed to crosslinked densified surface and great adhesion force between the electrochromic layer and ITO substrate through the hydrolysis reaction. Moreover, an ample color change is achieved by introducing colored CR as end groups. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 412–419  相似文献   

12.
The postmodification of poly[9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P1 ) upon its reaction with N‐bromosuccinimide affords exclusive and full bromination of the 3,6‐positions of the carbazole repeat units to yield poly[3,6‐dibromo‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P2 ). Brominated polymer P2 can be used as a precursor for further functionalization at the 3,6‐positions with the desired functional group to afford other useful polymers. Polymer P2 has hence been reacted with copper(I) cyanide to afford poly[3,6‐dicyano‐9‐(2‐hexyldecyl)‐9H‐carbazole‐2,7‐diyl] ( P3 ). Full substitution of the bromide groups with nitrile‐functional groups has been achieved. The preparation and structural characterization of polymers P2 and P3 are presented together with studies on their electronic conjugation and photoluminescence properties. Cyclic voltammetry studies on polymer P3 indicate that the new polymer is easier to reduce (n‐dope) but more difficult to oxidize than its unsubstituted counterpart ( P1 ) as a result of the introduction of the electron‐withdrawing nitrile‐functional groups at the 3,6‐positions on the carbazole repeat units on the polymer chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3336–3342, 2006  相似文献   

13.
A microporous polymer is prepared by a catalyst‐free Diels–Alder reaction. A cyclopentadiene with both a diene and a dienophile functionality and a dienophilic maleimide are used for the Diels–Alder reaction. 1,3,5‐Tris(bromomethyl)‐2,4,6‐trimethylbenzene is reacted with sodium cyclopentadienide to produce the multicyclopentadiene‐functionalized monomer. A crosslinked polymer ( CDAP ) is obtained by the reaction of the cyclopentadiene monomer with N,N′‐1,4‐phenylenedimaleimide. The thermal dissociation of the cyclopentadiene dimeric unit and the subsequent Diels–Alder reaction with the maleimide group are investigated by the model reaction. We are able to restructure the crosslinked polymer network by taking advantage of the thermal reversibility of the Diels–Alder linkage. After the post thermal treatment, the BET surface area of the polymer ( CDAP‐T ) is greatly increased from 317 to 1038 m2 g?1. CDAP‐T is functionalized with pyrene by bromination with N‐bromosuccinimide and the subsequent substitution reaction with aminopyrene. The adsorption property of the pyrene‐functionalized polymer for an aromatic dye is investigated using malachite green. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3646–3653  相似文献   

14.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

15.
Novel types of dual‐functional surface‐attached polymer brushes were developed by interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization of 6‐azidohexylmethacrylate using the surface‐immobilized RAFT agent and the free initiator. The interface‐mediated RAFT polymerization produced silicon substrate coated with dual‐functional (azido groups from monomer and carboxylic acid groups from RAFT agent) poly(6‐azidohexylmethacrylate) [poly (AHMA)] with a grafting density as high as 0.59 chains/nm2. Dual‐functional polymer brushes can represent an attractive chemical platform to deliberately introduce other molecular units at specific sites. The azido groups of the poly(AHMA) brushes can be modified with alkyl groups via click reaction, known for their DNA hybridization, while the carboxylic acid end groups can be reacted with amine groups via amide reaction, known for their antifouling properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1696–1706  相似文献   

16.
We report a conjugation system for the enhancement of photochromic dye performance in rigid matrices using widely available, cheap, chemically robust and compatible polymeric starting materials, namely poly(propylene oxide) (PPO) and poly(1,2‐butylene oxide). Conjugation of these soft (low Tg) polymers to an indeno‐fused naphthopyran photochromic dye, in a telechelic geometry, gives access to a wide range of accelerated and tuned fade speeds (decoloration) via variation in molecular weight. The t1/2 and t3/4 fade speeds for PPO conjugates (polymer molecular weights ranging between ca. 425 and 2000) are accelerated by 35–58 and 51–76%, respectively, compared with the nonconjugated control dye. Longer oligomers provide faster decoloration approaching that obtained in solution. The stability of the polyethers allows functionalization using a wide variety of chemistries, including harsh acid catalyzed transformations, providing an overall facile synthesis of photochromic dye‐polymer conjugates in high yield and purity. In addition, these polymers give easy access to conjugates with star‐type architectures, which provide an even further improvement in performance compared with their linear counterparts with less conjugated polymer needed per dye to achieve a given fade speed. © 2012 Commonwealth of Australia. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A new model has been developed to account for the dependence of the optical anisotropy of a dye polarizer on the dye concentration. The effect of the dye concentration has been studied through an examination of the changes in the orientation distribution of the polymer. The model takes into account the intrinsic optical anisotropy of the dichroic dye, the polymer orientation, the polymer orientation distribution, and the dye orientation with respect to the polymer. It is assumed that (1) the orientation distribution function of the polymer segments can be expressed as an elliptical distribution function and that (2) the free rotation of each dye molecule on its axis is suppressed because of the attraction force between the dye molecules and the polymer chains. The pseudo‐order parameter, which takes into account the aforementioned assumptions, determines the relation between single‐piece transmittance and polarizing efficiency. The orientation distribution of the polymer molecules in the experiment and its effect on the optical performance of a polarizer are quantitatively determined. The model predicts that the effect of the orientation distribution becomes more significant as the polymer chains are oriented more highly. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1363–1370, 2002  相似文献   

18.
This article describes the construction of branched ROMP‐polymer architectures via polycondensation of ABn‐type macromonomers. For this convergent strategy, a polymer was synthesized that carries several hydroxyl‐groups along the polymer chain and one carboxylic acid group at the chain end. An esterification reaction between these functional groups yielded long‐chain branched polymers. The polymers were analyzed by NMR and SEC to monitor the condensation reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

19.
Xyloglucan is a natural polysaccharide having a cellulose‐like backbone and hydroxyl groups‐rich side‐chains. In its native form the polymer is water‐soluble and forms gel only in presence of selected co‐solutes. When a given fraction of galactosyl residues are removed by enzymatic reaction, the polymer acquires the ability to form a gel in aqueous solution at physiological temperatures, a property of great interest for biomedical/pharmaceutical applications. This work presents data on the effect of a temperature increase on degalactosylated xyloglucan dispersed in water at concentration low enough not to run into macroscopic gelation. Results obtained over a wide interval of length scales show that, on increasing temperature, individual polymer chains and pre‐existing clusters self‐assemble into larger structures. The process implies a structural rearrangement over a few nanometers scale and an increase of dynamics homogeneity. The relation of these findings to coil‐globule transition and phase separation is discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1727–1735  相似文献   

20.
Post‐polymerization modification is an important synthetic method to produce macromolecules with various chemical and physical properties. With this technique, functional groups of polymer molecules within the same structural scaffold can be varied, and thus, accurate research on structure‐property relationships is possible. To add practicality, the direct post‐polymerization of commodity polymers has been pursued, but only limited success has been realized. In this report, a study on various transesterification methods for the synthesis of functional polyacrylates beginning with a poly(methyl acrylate) (PMA), one common acrylate polymer, is presented. The Zn‐based catalytic system, a combination of Zn4(OCOCF3)6O and 4‐dimethylaminopyridine with instant methanol removal, exhibited the highest reactivity among many catalysts and conditions. Assorted alcohols were reacted with PMA to produce the corresponding polyacrylates. This method was successfully extended to post‐polymerization modification of a PMA‐containing block copolymer, PS‐b‐PMA and synthesis of acrylate copolymers with functional group density control. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2554–2560  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号