首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic electron polarisation (DEP) produced by the quenching of dye molecules in the triplet excited states by nitroxide radicals was investigated in aqueous solutions by pulsed electron paramagnetic resonance and transient absorption spectroscopy. An analysis of the measured quenching rate constants suggests that quenching is promoted by either exchange or charge-transfer mechanisms for a triplet dye and a doublet radical pair. An unusually large DEP on the radical was found generated in the nitroxide and Eosin Y or Rose Bengal systems in aqueous solutions. Quantitative analysis indicates that the DEP values in aqueous solutions range from ?40 to ?150 in the unit of thermal spin polarisation, which is in contrast to previously reported small DEP values of less than ?10 for organic triplet molecules in benzene solutions [22–27,29,31,32]. From the theoretical analysis of DEP, an origin of this large DEP was attributed to the notably slow diffusion motion of Eosin Y and Rose Bengal in water.  相似文献   

2.
喹啉水溶液真空紫外降解过程中的吸收光谱分析   总被引:4,自引:0,他引:4  
在以低压石英汞灯为真空紫外光源降解喹啉水溶液的过程中,通过监测体系吸收光谱的变化,绘制不同时刻吸收光谱图,探讨了用紫外-可见吸收光谱作为在线检测反应进程的可行性。结合体系中底物浓度、COD、TOC和pH的变化,分析了各吸收光谱的变化特征和机制。研究表明,受吡啶环上N原子的影响,喹啉在不同pH环境下以不同的形式存在,吸收光谱也有较大的差异。在降解的过程中,体系的吸收光谱受到底物降解、中间产物生成和体系pH的共同影响。由于中间产物质子酸的生成,使喹啉以质子化的形式存在,当质子化产生的吸收增加与降解导致的吸收减少相等时,特征吸收峰313 nm处的吸收在1~3 min会出现平台,然后持续衰减。254 nm处的吸收先在5 min时增加到一个极大值,然后持续衰减,至30 min时衰减至0,而且此时溶液的吸收仅在220 nm以下区域,说明底物已降低得比较彻底。文章的研究结果表明,可以用吸收光谱来在线监测喹啉真空紫外降解的进程。  相似文献   

3.
We have used the sol–gel method to synthesize titanium dioxide in the pores of an anodic aluminum oxide membrane. The samples were used for the test reaction of degradation of the organic dye rhodamine B. The concentration of the dye rhodamine B was monitored from the change in the absorption spectra in the 554 nm region, for an aqueous solution containing the dye and exposed to the emission from a mercury lamp. The synthesized samples of titanium oxide xerogel in the porous anodic aluminum oxide membrane are efficient photocatalysts for decomposition of organic dyes in an aqueous medium.  相似文献   

4.
The kinetics of triplet-triplet energy transfer in the gas phase has been studied for various donor-acceptor pairs of aromatic hydrocarbons and ketones. For all the donor-acceptor pairs investigated the triplet-triplet energy transfer efficiencies are much lower than unity. The triplet triplet energy transfer was used to gain insight into the paths of intramolecular excitation energy degradation in benzophenone and anthraquinone vapours and to obtain sensitized anti-Stokes annihilation delayed fluorescence of vapours of anthracene and its derivatives.

The intermolecular triplet-triplet transfer (T-T transfer) of excitation energy and sensitized phosphorescence were first discovered in 1952 by Terenin and Yermolayev in organic solutions1. Later these phenomena became known for liquid solutions2, crystals3, and also for vapours4-10. And though the nature of interactions underlying the T-T energy transfer phenomena in different aggregate states is the same, a number of specific features is observed in the vapour phase. The study of these processes makes it possible to obtain additional information on interacting molecules.  相似文献   

5.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreduction reactions and ability of several chloro‐substituted benzophenone (Cl‐BP) triplets is described. The TR3 results show that the 3‐chlorobenzophenone (3‐Cl‐BP), 4‐chlorobenzophenone (4‐Cl‐BP) and 4,4′‐dichlorobenzophenone (4,4′‐dichloro‐BP) triplets exhibit similar hydrogen abstraction ability with the parent BP triplet. In 2‐propanol, the 3‐Cl‐, 4‐Cl‐ and 4,4′‐dichloro‐diphenylketyl (DPK) radicals were observed and they appear to react with dimethylketyl radicals at the para‐position to form a light absorption transient species. These transient species were characterized with TR3 spectra, and identified with the help of results from density functional theory calculations. In an acetontitrile/water (MeCN:H2O) 1:1 mixed solvent, these DPK radicals were also observed but with slower formation rates. However, the 2‐Cl‐DPK radical was observed to form with a lower yield and a significantly slower formation rate than the other chloro‐substituted benzophenones examined here in 2‐propanol under the same experimental conditions. These results reveal that the 2‐chloro substituent reduces the hydrogen abstraction ability of the substituted BP triplet, which was not as expected based on the assumption that the electron‐withdrawing group could increase its photoreduction ability. This unusual ortho effect of the chlorine substitution is briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The photochemical reaction of 2-methyl-1,4-naphthoquinone in sodium dodecyl-sulphate micellar solution was investigated with an optical detection ESR apparatus working at 17.44 GHz (Ku-band). The Ku-band RYDMR spectra are obtained from the transient optical absorption and the stationary absorption of the reaction product, and the shift of the spectral peak compared with the spectra at 331 mT is reproduced well by the difference in g of the component radicals. The microwave pulse length dependence shows the quantum beat originated from the conversion between triplet ±1 states and the mixed state of singlet and triplet 0 states by the microwave field. The decay rate of the radical pair in triplet ±1 at 622 mT was determined to be 7.1 ± 1.1 × 105 s?1 by changing the irradiation time of a short (20 ns) microwave pulse with reference to the laser excitation. This value is smaller than that at 331 mT, as expected by the relaxation mechanism.  相似文献   

7.
High triplet quantum yields of more than 90% for bithiophene and terthiophene have to be connected with very fast and effective formation of triplets after excitation. We studied these processes with fs pump–probe spectroscopy. The time behaviour of transient optical spectra within the singlet and triplet manifold was examined for bi- and terthiophene (2T and 3T) in solution. For 2T we used two-photon absorption for excitation. We found transient spectra of the excited singlet state, the triplet state and that of radical cations. The kinetics of the excited-state absorption was described by a bi-exponential function. Additionally we observed formation and recombination of radical cations. The recombination is connected with triplet formation. Both processes could be described by a time constant of 62 ps±9 ps. For 3T we found a dependence of the processes on excitation energy using one-photon absorption. The triplet quantum yield increased with higher excitation energy. The kinetics becomes bi-exponential with increasing amplitude of the short time constant of 2 ps at increasing excitation energy. The main reasons for the effective intersystem crossing (ISC) in both oligothiophenes are – besides the high spin-orbit coupling factor introduced by the sulphur atom – the almost isoenergetic positions of the S 1 and T 2 states, detected by PD-PES [1]. At higher photon excitation energy for 3T above the band gap an additional channel for ISC was detected. We believe that during the geometric change from the non-relaxed non-planar to the relaxed planar excited state S 1, ultrafast intersystem crossing takes place. Received: 6 December 1999 / Published online: 2 August 2000  相似文献   

8.

Time-resolved spectra, decay kinetics and polarization of the transient optical absorption induced by irradiation of additively colored BeO crystals with electron pulses have been studied. It has been established that the two bands at 3.8 and 4.3 v eV of the transient optical absorption are due to the transitions between triplet and singlet excited states of F -centres in BeO. The polarization of excited F -centres absorption is discussed on the basis of analysis of the splitting of singlet and triplet states in crystalline field of the C 3v symmetry.  相似文献   

9.
Benzophenone and its derivatives in dimethylsulphoxide (DMSO) exhibit biphotonic photochemistry under 355 nm laser photolysis. Flash photolysis electron paramagnetic resonance experiments demonstrate that a single laser pulse is capable of producing and exciting benzophenone triplets, which can sensitize dimethylsulphoxide and subsequently lead to photodecomposition. In decafluorobenzophenone, electron transfer is the dominant process of the highly excited triplet state. Despite the rapid radiationless decay of 2-hydroxybenzophenone (2OHbenzophenone) in non-polar solvents, radical signals are observed from the photoexcitation of 2OHbenzophenone in DMSO. This is attributed to the sufficiently rapid excitation of the triplet state, which competes with the radiationless decay process, aided by the unique solvent properties of DMSO. It is concluded, in contrast to literature data, that the excited triplet state of DMSO is reactive, and can produce methyl radicals that show triplet mechanism polarization via the biphotonic photoexcitation of benzophenone.  相似文献   

10.
The heavy atom effect on the radical-pair lifetime was studied on the photochemical hydrogen-abstraction reaction of benzophenone and its derivatives having halogen atoms in the phenyl group in an SDS micellar solution by using the pulse-mode product-yield-detected ESR technique. Upon introducing bromine atoms in the benzophenone frame the lifetime was shortened considerably, though no appreciable effects were found for other systems with lighter halogens. Through estimation of the several factors which may affect the lifetime of radical pair upon the halogen introduction, we concluded that the intersystem recombination, which is the geminate recombination of redical pair from the triplet state, was the main mechanism of the observed shortening of the lifetime.  相似文献   

11.
The influence of the organic molecule (naphthalene, acenaphthene, and benzophenone) concentration in toluene at 77 K on the phosphorescence parameters of degassed and non-degassed solutions is studied for organic molecule concentrations ranging from 0.025 to 0.8 M. The migration-accelerated quenching of triplet excitations of naphthalene and acenaphthene by oxygen molecules is established. A conclusion is drawn that this quenching mechanism can be one of the main reasons for the influence of the concentration on the phosphorescence parameters of impurity centers in non-degassed solid solutions of organic compounds at 77 K.  相似文献   

12.
The photocleavage of the CBr bond in bromoacetylnaphthalene is investigated by transient absorption and time resolved EPR spectroscopy. In the transient absorption of 2-bromo-2′-acetylnaphthalene, the absorption band observed at λmax ~440 nm is assigned to the triplet state of the parent molecule. After decay of the triplet absorption, a long lived absorption band is observed at λmax ~380 nm, which is assigned to naphthoylmethyl radical. The yield of this radical is not dependent on the concentration of oxygen even though the absorption band of the triplet state was quenched by addition of oxygen. Thus we conclude that the spin multiplicity of the precursor molecule is singlet. The CW time resolved EPR spectrum shows a typical E?/A CIDEP pattern of three hyperfine lines of the naphthoylmethyl radical. This result suggests some contribution from triplet precursor molecules. However, a careful analysis of the time profile of the CIDEP intensity observed by FT-EPR revealed that the polarization is generated from the radical pair mechanism (RPM) from the encountered pair of two free naphthoylmethyl radicals and the radical-triplet pair mechanism. RPM polarization by the geminate radical pair, formed by the Br atom and the naphthoylmethyl radical, is not observed. This fact indicates that large spin-orbit coupling (Δg and/or fast spin relaxation by g anisotropy) spoils the RPM polarization. The finding is in contrast to the recent observation of RPM polarization in the Cl cleavage reaction of 1-(chloromethyl)naphthalene.  相似文献   

13.
利用纳秒级激光光解动态吸收光谱装置,研究1,2-和1,4-萘醌中性水溶液的瞻态吸收光谱,发现1,2-萘醌及,1,4-萘醌被光电离合形成的阳离子自由基在380nm均有最大吸收,但1,4-萘阳离子自由基在衰变过程中又形成了两种新的活性粒子,它们的最大吸收分别位于410和580nm,分析表明:410nm属于1,4-蔡醌脱氢自由基的吸收,而580nm很可能归属由于于410和580nm,分析表明:410nm  相似文献   

14.
Han JJ  Xu F  Sun Q  Bian J  Li LH 《光谱学与光谱分析》2010,30(9):2567-2570
用以单细胞原生动物嗜热四膜虫对阿散酸及其降解物的砷吸收模型,研究了饲料添加剂阿散酸及其环境降解物对生物体的影响.四膜虫在含有阿散酸及其降解物的培养基中培养72 h后,洗去培养基,收集细胞.将虫体裂解,分离细胞膜和细胞内质液,经消解.用流动注射氢化物发生-原子荧光光谱法(HG-AFS)分别测定了细胞膜上和细胞膜内的砷.结果表明,阿散酸及其环境降解物可被细胞膜吸收并进入细胞内,且降解产生的无机砷比阿散酸更易被吸收,生物体通过细胞的砷吸收引起毒害.  相似文献   

15.
Radiationless energy transfer between like and unlike molecules has been experimentally studied under conditions where acceptor molecules have been excited to the triplet state Homogeneous singlet-triplet-triplet migration has been discovered in highlyconcentrated chlorophyll “a” and pheophytin “a” solutions in castor oil at 183 K by measuring the variation of pigment relative quantum yields of fluorescence and triplet state formation as a function of exciting pulse intensity. Heterogeneous single-triplet-triplet energy transfer has been observed in solid solutions of different complex organic molecules (perylene + phenanthrene, Na-fluorescein+chlorophyll “a”, pyrene+Mg-phthalocyanine) as the fluorescent donor state quenching in the presence of acceptor triplet-excited molecules. Primary emphasis is placed on a direct observation of the effect of energy transfer on the excited-state lifetime of the donor. The benzophenone phosphorescence quenching (shortening of phosphorescence lifetime) in the presence of Mg-mesoporphyrin triplet molecules has been found to be caused by the heterogeneous triplet-triplet-triplet energy transfer. Good agreement of the theoretical and experimental results permits us to conclude that all types of observed transfer processes are described by the Förster-Galanin theory for dipole-dipole radiationless energy transfer with no additional assumptions.  相似文献   

16.
The singlet excited-state lifetime of a terpyridyl platinum(II) pentynyl complex was determined to be 268+/-87 ps by fitting femtosecond transient absorption data, the triplet excited-state lifetime was found to be 62 ns by fitting nanosecond transient absorption decay data, and the triplet quantum yield was measured to be 0.16. A ground-state absorption cross section of 2.5 x 10(-19) cm(2) at 532 nm was deduced from UV-vis absorption data. Excited-state absorption cross sections of 3.5 x 10(-17) cm(2) (singlet) and 4.5 x 10(-17) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies.  相似文献   

17.
ABSTRACT

In recent years, photoexcited molecular triplet states became increasingly popular in magnetic resonance, e.g. as spin probes to measure distances relative to other electron-paramagnetic species or as moieties that transfer light-generated electron–spin polarisation of the triplet state to surrounding magnetic nuclei. In this study, the triplet states of three commercially available dyes, Erythrosin B, Rose Bengal and Atto Thio 12, all typically utilised as fluorophores in optical spectroscopies and microscopies, are investigated in aqueous solutions by using transient absorption spectroscopy and transient electron paramagnetic resonance (EPR). From these methods, the triplet-state lifetimes as well as their zero-field splitting parameters, D and E, which reflect the electronic structures of the triplet state wavefunctions, were obtained. Atto Thio 12 exhibits much smaller D and E values as compared to Rose Bengal and Erythrosin B. On the basis of density functional theory calculations of the triplets’ energy splittings at zero magnetic field, these findings were rationalised. As a proof of concept for applications, the triplet-state properties of Atto Thio 12 bound to an aptamer were also determined and the results are discussed.  相似文献   

18.
A nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the intermolecular hydrogen‐abstraction reaction of the triplet state of 4‐benzoylpyridine (4‐BPy) in 2‐propanol solvent is reported. The TR3 results reveal a rapid hydrogen abstraction (<10 ns) by the 4‐BPy triplet state (nπ*) with the 2‐propanol solvent, leading to formation of a 4‐BPy ketyl radical and an associated dimethyl ketyl radical partner from the solvent. The recombination of these two radical species occurs with a time constant about 200 ns to produce a para‐N‐LAT (light absorbing transient). The structure, major spectral features, and identification of the ketyl radical and the para‐N‐LAT coupling complex have been determined and confirmed by comparison of the TR3 results with results from density functional theory (DFT) calculations. A reaction pathway for the photolysis of 4‐BPy in 2‐propanol deduced from the TR3 results is also presented. The electron‐withdrawing effect of the heterocyclic nitrogen for 4‐BPy on the triplet state makes it have a significantly higher chemical reactivity for the hydrogen abstraction with 2‐propanol compared to the previously reported corresponding benzophenone triplet reaction under similar reaction conditions. In addition, the 4‐BPy ketyl radical reacts with the dimethyl ketyl radical to attach at the para‐N atom position of the pyridine ring to form a cross‐coupling product such as 2‐[4‐(hydroxy‐phenyl‐methylene)‐4h‐pyridin‐1‐yl]‐propan‐2‐ol instead of attacking at the para‐C atom position as was observed for the corresponding benzophenone reaction reported in an earlier study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The degradation of 2-chlorophenol and of the two azo dyes acid orange 8 and acid red 1 in aqueous solution was investigated kinetically under sonolysis at 20 kHz and under photocatalysis in the presence of titanium dioxide particles, as well as under simultaneous sonolysis and photocatalysis, i.e. sonophotocatalysis. The influence on the degradation and mineralisation rates of the initial substrate concentration and of the photocatalyst amount was systematically investigated to ascertain the origin of the synergistic effect observed between the two degradation techniques. The evolution of hydrogen peroxide during kinetic runs was also monitored. Small amounts of Fe(III) were found to affect both the adsorption equilibria on the semiconductor and the degradation paths. Ultrasound may modify the rate of photocatalytic degradation by promoting the deaggregation of the photocatalyst, by inducing the desorption of organic substrates and degradation intermediates from the photocatalyst surface and, mainly, by favouring the scission of the photocatalytically and sonolytically produced H(2)O(2), with a consequent increase of oxidising species in the aqueous phase.  相似文献   

20.
The sonochemical degradation of a variety of chemical contaminants in aqueous solution has been investigated. Substrates such as chlorinated hydrocarbons, pesticides, phenols, explosives such as TNT, and esters are transformed into short-chain organic acids, CO2, and inorganic ions as the final products. Time scales of treatment in simple batch reactors over the frequency range of 20 to 500 kHz are reported to range from minutes to hours for complete degradation. Ultrasonic irradiation appears to be an effective method for the rapid destruction of organic contaminants in water because of localized high concentrations of oxidizing species such as hydroxyl radical and hydrogen peroxide in solution, high localized temperatures and pressures, and the formation of transient supercritical water.

The degradation of chemical compounds by acoustic cavitation is shown to involve three distinct pathways: 1) oxidation by hydroxyl radicals, 2) pyrolytic decomposition and 3) supercritical water oxidation. Detailed reaction mechanisms for the degradation of p-nitrophenol, carbon tetrachloride, parathion, p-nitrophenyl acetate and trinitrotoluene are presented.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号