首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

2.
Understanding the adsorption and reaction between hydrogen and graphene is of fundamental importance for developing graphene‐based concepts for hydrogen storage and for the chemical functionalization of graphene by hydrogenation. Recently, theoretical studies of single‐sided hydrogenated graphene, so called graphone, predicted it to be a promising semiconductor for applications in graphene‐based electronics. Here, we report on the synthesis of graphone bound to a Ni(111) surface. We investigate the formation process by X‐ray photoelectron spectroscopy (XPS), temperature‐programmed desorption (TPD), and density‐functional theory calculations, showing that the hydrogenation of graphene with atomic hydrogen indeed leads to graphone, that is, a hydrogen coverage of 1 ML (4.2 wt %). The dehydrogenation of graphone reveals complex desorption processes that are attributed to coverage‐dependent changes in the activation energies for the associative desorption of hydrogen as molecular H2.  相似文献   

3.
The points raised in the paper entitled “Comments on the paper entitled ‘The formulation and modelling of the anodic dissolution of zinc through adsorbed intermediates”’ have been discussed. It has been shown that, in contrast to the statements in the “Comments”, most of the papers concerning the reaction schemes suggested for the interpretation of the dissolution or deposition of metals, which were considered as a support for the opinion of the Authors of the “Comments”, support the views expressed in our original paper [J. Electroanal. Chem. 583 (2005) 148]. On the other hand, it has been stressed again that the criticism expressed in the original paper refers to dubious conclusions drawn on the basis of transient measurements.  相似文献   

4.
Two new palladium‐catalyzed reactions of aromatic sulfur compounds enabled the conversion of dibenzothiophenes into triphenylenes in four steps. This transformation of one aromatic framework into another consists of 1) 4‐chlorobutylation of the dibenzothiophene to form the corresponding sulfonium salt, 2) palladium‐catalyzed arylative ring opening of the sulfonium salt with a sodium tetraarylborate, 3) an intramolecular SN2 reaction to form a teraryl sulfonium salt, and 4) palladium‐catalyzed intramolecular C? S/C? H coupling through electrophilic palladation. Symmetrical as well as unsymmetrical triphenylenes of interest were synthesized in a tailor‐made fashion in satisfactory overall yields.  相似文献   

5.
An analysis of the LCAO Hamiltonian is performed in terms of a “mixed” formulation of the second quantization for nonorthogonal orbitals, compressing the different interactions to one- and two-center terms as far as possible by performing appropriate projections. For this purpose an operator of atomic charge is also introduced, the expectation values of which are the Mulliken gross atomic populations on the individual atoms. The LCAO Hamiltonian is decomposed into terms having different physical meaning and significance: (i) sum of effective atomic Hamiltonians; (ii) the electrostatic interactions in the point-charge approximation; (iii) the electrostatic effects connected with the deviation of the actual charge distribution from the pointlike one; (iv) two-center overlap effects; (v) finite basis (“counterpoise”) correction terms related to the individual atoms; and (vi) similar finite basis correction terms with respect to the two-center interactions. Only terms of types (i) to (iv), containing no three- or four-center integrals, are considered as having physical significance. Based on the analysis of the Hamiltonian, an energy partitioning scheme is developed, and explicit expressions are given for one- and two-center (and basis extension) components of the SCF energy. The approach is also applied to the problem of intermolecular interactions, and an explicit formula is given permitting calculation of the “counterpoise” part of the supermolecule energy by properly taking into account that it depends not only on the extension of the basis, but also on the occupation of the additional orbitals in the intervening molecule—a factor completely overlooked in the usual scheme of calculations.  相似文献   

6.
Silicon should be an ideal semiconductor material if it can be proven usable for photocatalytic water splitting, given its high natural abundance. Thus it is imperative to explore the possibility of water splitting by running photocatalysis on a silicon surface and to decode the mechanism behind it. It is reported that hydrogen gas can indeed be produced from Si nanowires when illuminated in water, but the reactions are not a real water‐splitting process. Instead, the production of hydrogen gas on the Si nanowires occurs through the cleavage of Si? H bonds and the formation of Si? OH bonds, resulting in the low probability of generating oxygen. On the other hand, these two types of surface dangling bonds both extract photoexcited electrons, whose competition greatly impacts on carrier lifetime and reaction efficiency. Thus surface chemistry holds the key to achieving high efficiency in such a photocatalytic system.  相似文献   

7.
This paper reports a “green” facile, room temperature, one-pot synthesis of starch-capped CdSe nanostructures with an obvious quantum confinement effect via a novel non-organometallic method. It is found that by simply tuning the Cd:Se molar ratio, dots and elongated particles of high aspect ratio could be prepared selectively in the presence of the same ligand concentration without any post-treatment. Spherical particles were produced at 1:1 ratio, while elongated particles were produced at 0.5:1 Cd:Se ratio. The X-ray diffraction (XRD) analysis showed that the particles were predominantly of wurtzite structure, with sharp diffraction patterns regardless of their size and shapes. We inferred that the elongated particles are formed by self-reorganisation occurring via adhesion between the spherical nanoparticles as a result of dipole–dipole interactions.  相似文献   

8.
Using the specific functional form D(C)/D0=1+(αC)−β(αC)2 an investigation has been made of (isothermal) transport through a slab membrane under ‘simple’ boundary conditions and governed by a diffusion coefficient, D(C), which, with increasing concentration, at first increases, passes through a maximum value and finally decreases. The flux, integral diffusion coefficient and concentration profile characteristic of steady-state permeation have been evaluated; special attention has been paid to the positions of such profiles in relation to the corresponding linear distribution associated with a constant diffusion coefficient.The corresponding transient-state transport has been studied within a framework of the time-lag ‘early-time’ and ‘ ’ procedures. Expressions for the ‘adsorption’ and ‘desorption’ time-lags are given. The concentration-dependence of these time-lags, of the (four) integral diffusion coefficients derived from them and of the arithmetic-mean time-lag ratios have been considered in some detail. The ‘early-time’ and ‘ ’ finite-difference procedures have likewise been employed to derive four further integral diffusion coefficients, so enabling a comparison to be made of the nine integral coefficients pertaining to established experimental techniques.Particular interest attaches to the situation for which n≡β(αC0)=1 (where C0 is the ingoing or upstream concentration of diffusant) resulting in D(C0) being symmetrical about C0/2. Some consideration has been given, in general, to features of transient-state transport when governed by a symmetrical D(C).  相似文献   

9.
Both the formation energy and the diffusive activation energy of a single vacancy migrating in the first four atomic layers intra- and inter-layer near Cu Σ = 9 [110] twist GB have been investigated by using the MAEAM. The formation of the vacancy is favorable on the first layer (1L) near the GB plane and is spontaneous on sites ‘2’–‘5’ especially ‘2’ and ‘4’. The effects of the GB on the intra- as well as inter-layer migration are mainly for 1L–1L as well as for 1L–1L′, 2L–1L and 3L–1L related to the 1L, respectively. Furthermore, the vacancy in 1L is favorable to migrate in 1L (intra-layer) or through GB plane to 1L′, the one in either 2L or 3L is favorable to migrate to 1L. So the vacancy tends to converge to the first layer near the GB plane.  相似文献   

10.
A completely “green” synthetic approach has been developed for the reduction and stabilization of Pt nanoparticles followed by self-assembly into nanowires in an aqueous β-d-glucose solution. Hydrothermal treatment initiated the reduction of Pt(IV) ions dispersed in a pH 8.0 β-d-glucose solution. The Pt nanoparticles were stabilized with oxidized glucose molecules. The Pt nanoparticles continued growing into nanowires followed by transformation into cubic nanocrystals with a rough needle surface. Evidence from TEM and FT-IR spectra reveal that carboxylate groups, which are generated by the oxidation of β-d-glucose, strongly interact with and stabilize the surface of these Pt nanostructures.  相似文献   

11.
The conjugated polyelectrolyte (CPE) poly{9,9′-bis[6″-(N,N,N-trimethylammonium)-hexylfluorene-alt-co-phenylene] dibromide} (PFPN+Br) demonstrates a high solubility in methanol in comparison to other more hydrophilic or hydrophobic solvents. We have employed a combination of pulsed-field-gradient-NMR, photoluminescence (PL), and Raman spectroscopy to establish the conformation and aggregation behavior of PFPN+Br in methanol, with the aim to attain information on how to design CPEs with a high solubility in a preferred solvent. We find that the diffusion coefficient and PL spectrum of PFPN+Br, as well as the Raman-active methyl rocking mode of methanol, all exhibit a strong dependence on PFPN+Br concentration. We rationalize our findings with a model in which PFPN+Br forms aggregates via π–π interactions between main-chain segments, while the ionic side chains are surrounded and electrostatically screened by the methanol solvent. Accordingly, the notably high solubility of PFPN+Br in methanol is rationalized by favorable interactions between the ionic side chains and the methanol molecules. We propose that an appropriate design of a high-solubility CPE should consider a matching of the mixed hydrophobic/hydrophilic character of the ionic side chain with that of the preferred solvent.  相似文献   

12.
All kinetic analyses aim to determine a sufficient number of kinetic parameters, usually at least an apparent Arrhenius activation energy and pre-exponential factor, and a conversion function or kinetic model (making up a ‘kinetic triplet’), so that accurate extrapolations of kinetic behaviour can be made. “Model-free” methods of kinetic analysis postpone the problem of identifying a suitable kinetic model until an estimate of the activation energy has been made. A major reason for doing this is that misidentification of the kinetic model has a marked effect on the values obtained for the Arrhenius parameters in both isothermal and non-isothermal kinetic analyses. Some aspects of this problem are discussed.

The non-parametric kinetics (NPK) method [1 and 2] is a “model-free” method of kinetic analysis that does not seem to have received the attention that it deserves. This is probably because of its mathematical sophistication and the fact that the matrix and non-linear regression calculations involved are not readily automated. The principle of the method appears to be that of “forcing” a set of non-isothermal data into the set which should have been obtained if the experiments had been carried out isothermally. The method deserves wider testing and also raises some interesting aspects of the philosophy behind non-isothermal kinetic analysis.  相似文献   


13.
Diffusion transfer of atomic hydrogen through multilayer metal membranes has been studied within the lattice model of an ideal gas, with the transfer being described by a set of nonlinear algebraic equations. It has been shown that, for multilayer membranes composed of less than four layers, an analytical expression describing a diffusion flux can be derived. Atomic hydrogen transfer through a membrane consisting of a vanadium layer, the surfaces of which are coated with palladium films, has been analyzed in detail. It has been found that the value of the flux may depend on the transfer direction. The effect of diffusion asymmetry arises at finite pressures of hydrogen on the outer membrane surfaces, when its dissolution in metals is described by nonlinear sorption isotherms. The degree of the diffusion asymmetry increases with a rise in hydrogen pressure and depends on the arrangement of the layers composing a membrane.  相似文献   

14.
The addition of gold to palladium membranes produces many desirable effects for hydrogen purification, including improved tolerance of sulfur compounds, reduction in hydride phase formation, and, for certain compositions, improved hydrogen permeability. The focus of this work is to determine if sequential plating can be used to produce self-supported alloy membranes with equivalent properties to membranes produced by conventional metallurgical techniques such as cold-working.Sequential electroplating and electroless plating were used to produce freestanding planar Pd–Au membranes with Au contents ranging from 0 to 20 wt%, consisting of Au layers on both sides of a pure Pd core. Membranes were characterized by single-gas permeation measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and high temperature, controlled-atmosphere XRD (HTXRD). Sequentially plated foils tested without any prior annealing had significantly lower H2 permeabilities than either measured or literature values for homogeneous foils of equivalent composition. This effect appears to be due to the formation of stable gold-enriched surface layers. Pretreatment of membranes to 1023 K created membranes with hydrogen permeabilities equivalent to literature values, despite the fact that trace amounts of surface gold remained detectable with XRD.  相似文献   

15.
BaVSe3 has been synthesized and its crystal structure determined at 293(2)°K. The structure was solved in the hexagonal space group P63/mmc (D46h), with a = 6.9990(11) and c = 5.8621(13) Å. Scans (2 Θ) of a polycrystalline sample revealed that BaVSe3 undergoes a transition to an orthorhombic unit cell (b′ 31/2 a, aa, cc) at 303(5)°K. Magnetic susceptibility measurements between 4 and 300°K indicate that BaVSe3 is paramagnetic down to 41(1)°K, where magnetic ordering occurs, with a magnetic moment in the ordered phase of 0.2 μB per vanadium atom. The orthorhombic lattice distortion may be caused by the “freezing in” of “soft” vibrational modes.  相似文献   

16.
Yang et al. reported pull-off force measurements between an atomic force microscope tip and a silicon wafer. They deduced the pressure of liquid water inside the capillary bridge formed in humid air. They claimed that their ‘research shows that nanoscale water capillary bridges are metastable and have absolutely negative pressure approaching the limit of stability for water’ (around −200 MPa at room temperature). Indeed, pressures reaching −160 MPa were reported, establishing a world record. However, we show that the bridges are not metastable, that the analysis used suffers from internal inconsistency, and that several assumptions made are questionable.  相似文献   

17.
The preparation and characterization of octadecylsilane, C18, monolayers on indium–tin oxide (ITO) have been studied carefully. A reproducible procedure was developed for the formation of C18/ITO employing octadecyltrimethoxysilane (OTMS) as a monomer. The films were studied by means of electrochemistry, wettability, infrared and atomic force microscopy. All these measurements provide evidence for the formation of a disorganized, ‘brush-type’ monolayer with a maximum surface fractional coverage of 0.90±0.04. The surface coverage can be controlled through the silanization time. The applications and implications of such disorganized monolayers in electroanalytical chemistry are discussed.  相似文献   

18.
Nanostructured ceramic membranes with ultrathin coatings of palladium metal have been demonstrated to separate hydrogen gas from a gas mixture containing nitrogen with 10% carbon dioxide and 10% hydrogen at temperatures up to 550 °C. The mechanically robust and thermally durable membranes were fabricated using a combination of conventional and high-efficiency anodisation processes on high purity aluminium foils. A pH-neutral plating solution has also been developed to enable electroless deposition of palladium metal on templates which were normally prone to chemical corrosion in strong acid or base environment. Activation and thus seeding of palladium nuclei on the surface of the template were essential to ensure uniform and fast deposition, and the thickness of the metal film was controlled by time of deposition. The palladium coated membranes showed improved hydrogen selectivity with increased temperature as well as after prolonged exposure to hydrogen, demonstrating excellent potential for gas separation technologies.  相似文献   

19.
This article describes a DNA‐like polymer that exhibits the ability to self‐assemble through hydrogen bonding. We synthesized poly[1‐(4‐vinylbenzyl)thymine] (PVBT) and 9‐hexadecyladenine (A‐C16) through an atom transfer radical polymerization (ATRP) and alkylation, respectively. Biocomplementary PVBT/A‐C16 hierarchical supramolecular complexes formed in dilute DMSO solution through nucleobase recognition, that is, hydrogen bonding interactions between the thymine (T) groups of PVBT and the adenine (A) group of A‐C16; evidence for this molecular recognition was also gained from dynamic light scattering studies. 1H NMR titration studies in CDCl3 showed that T–A complexes formed rapidly on the NMR time scale with high association constants (up to 534 M?1). Moreover, FTIR spectroscopic, differential scanning calorimetry, wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering analyses provided further details into the nature of the self‐assembly of these systems. In the bulk state, these complexes self‐assemble into well‐ordered lamellar structures; the changing d‐spacing distance (ranging from 4.98 to 2.32 nm) at different A‐C16 loadings reveals that the molecular structures of the PVBT/A‐C16 complexes are readily tailored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6416–6424, 2008  相似文献   

20.
The critical strain εc for crazing of polystyrene in each of a variety of organic liquids has been measured along with the degree of swelling of the polymer by the liquid and the attendant reduction in the glass transition temperature Tg of the polymer. The critical strain for the crazing in air and the Tg of each of a set of specimens molded from mixtures of o-dichlorobenzene and polystyrene have also been determined. Correlations of εc with Tg in the two cases are identical within experimental error for the first 40°C of Tg reduction; these results imply (1) that organic liquids do not exercise a significant surface energy role in solvent crazing and (2) that their only roles are associated with flow processes. Correlation of solvent crazing εc with solubility parameter of the crazing fluid is very poor for several reasons that are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号