首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unique cerium nitrate complex, [Ce(NO3)3(OH2)(12-crown-4)]-12-crown-4, has been crystallized from the reaction of hydrated cerium nitrate and 12-crown-4. It crystallizes in the orthorhombic space group,Pnma, with (at –150°C)a = 22.901(5),b = 13.547(3),c = 8.422(1)Å, andD x = 1.77 g cm–3 forZ = 4 formula units. A finalR value of 0.048 was obtained utilizing 2059 unique observed [F o 5(F o)] reflections. The Ce atom resides on a crystallographic mirror plane and is 11-coordinate, coordinated to three bidentate nitrate groups, one water molecule and the four oxygens of one 12-crown-4 molecule. The water molecule hydrogen bonds a second 12-crown-4 unit. Both unique crown molecules and one of the nitrate anions are severely disordered.For part 26, see reference [1].  相似文献   

2.
Crystalline [Y(OH2)3(NCMe)(benzo-15-crown-5)][ClO4]3·benzo-15-crown-5-CH3CN can be obtained by slowly cooling a reaction mixture of Y(ClO4)3·n H2O with benzo-15-crown-5 in a solution of acetonitrile and methanol (3 : 1) from 60°C to room temperature. The crystal structure of this complex has been determined at –150 and 20°C. The complex is triclinic,P . At –150°C the cell parameters area = 11.986(4),b = 12.071(7),c = 16.364(5) Å, = 93.56(3), = 98.68(3), = 109.68(4)°, vol = 2187 Å3, andD calc = 1.61 g cm–3 forZ = 2 formula units. 3633 independently observed [F o 5(F o)] reflections were used in the final least-squares refinement leading to an agreement index ofR = 0.048. The Y(III) ion coordination geometry approximates a tricapped trigonal prism with three water molecules and three benzo-15-crown-5 oxygen atoms forming the prism, with the two remaining benzo-15-crown-5 oxygen atoms and the acetonitrile molecule completing the coordination as capping atoms. The three water molecules hydrogen bond a second crown ether molecule and two of the perchlorate anions. The two acetonitrile molecules have contacts with perchlorate oxygen atoms close enough for some weak interaction. One perchlorate is ordered, one is partially disordered as is the coordinated solvent molecule, and the third anion is totally disordered. The two unique crown ether molecules have distinctively different conformations.For Part 20, see reference [1].  相似文献   

3.
The reaction of UO2(ClO4nH2O with 15-crown-5 and 18-crown-6 in acetonitrile yielded the title complexes. [UO2(OH2)5] [ClO4]2·3(15-crown-5)·CH3CN crystallizes in the triclinic space groupPT with (at–150°C)a=8.288(6),b=12.874(7),c=24.678(7) Å, =82.62(4), =76.06(5), =81.06(5)°, andD calc=1.67 g cm–3 forZ=2 formula units. Least-squares refinement using 6248 independent observed reflections [F o5(F o)] led toR=0.111. [UO2(OH2)5] [ClO4]2·2(18-crown-6)·2CH3CN·H2O is orthorhombicP212121 with (at–150 °C)a=12.280(2),b=17.311(7),c=22.056(3) Å,D calc=1.68 g cm–3,Z=4, andR=0.032 (3777 observed reflections). In each complex the crown ether molecules are hydrogen bonded to the water molecules of the pentagonal bipyramidal [UO2(OH2)5]2+ ions, each crown ether having exclusive use of two hydrogen atoms from one water molecule and one hydrogen from another water molecule. In the 15-crown-5 complex the remaining hydrogen bonding interaction is between one of the water molecules and one of the perchlorate anions. The solvent molecule has a close contact between the methyl group and a perchlorate anion suggesting a weak interaction. There are a total of three U-OH...OClO3 hydrogen bonds to the two perchlorate anions in [UO2(OH2)5] [ClO4]2·(18-crown-6)·2CH3CN ·H2O. The remaining coordinated water hydrogen bond is to the uncoordinated 2H2O molecule, which in turn is hydrogen bonded to a perchlorate oxygen atom and an acetonitrile nitrogen atom. One solvent methyl group interacts with an anion, the other with one of the 18-crown-6 molecules. Unlike the 15-crown-5 structure, the hydrogen bonding in this complex results in a polymeric network with formula units joined by hydrogen bonds from one of the solvent molecules and the uncoordinated water molecule. Supplementary data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82051 (37 pages).For Part 10, see reference [1].  相似文献   

4.
The title complex was crystallized from a saturated solution of 18-crown-6 in nitromethane at 5°C and cooled to –150°C prior to X-ray diffraction data collection. At –150° C 18-crown-6·2(CH3NO2) is monoclinic,P21/n witha=9.290(2),b=7.864(6),c=13.627(8) Å, =1000.84(4)° andD calc=1.31 g cm–3 for Z=2. Leastsquares refinement using 1521 independent observed reflections [F o5(F o)] led to a final conventionalR value of 0.041. The complex at –150°C is isostructural with its room temperature structure with the exception of the orientation of the methyl hydrogen atoms and their crown ether oxygen interactions. The methyl group hydrogen atoms were fully refined isotropically. The crown ether resides around a center of inversion and hasD 3d symmetry. There is one methyl hydrogen...crown interaction at 2.35(3) Å, one apparently bifurcated hydrogen bond utilizing a second methyl hydrogen atom (2.55(3), 2.65(3) Å) and the third hydrogen atom is actually directed away from the crown ring (closest H...O contact=2.67(3) Å). Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82048 (5 pages).For part 2, see reference [24].  相似文献   

5.
The crown ether 12-crown-4 reacts with trimethylaluminum in toluene to form the complex [AlMe3]2[12-crown-4]. Attempts to utilize the remaining two oxygen atoms for coordination to AlMe3 molecules were unsuccessful. The 21 complex crystallizes in the monoclinic space groupP21/n witha=11.342(7),b=12.941(4),c=6.973(6) Å, and =95.48(4)°. Refinement led to a finalR value of 0.047 for 925 observed reflections. The molecule resides on a crystallographic center of inversion, and as required by symmetry, the four oxygen atoms are planar. The Al–O bond is strong as revealed by the bond length of 1.977(3) Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82013 (9 pages).  相似文献   

6.
The crystal structures of two 12-membered crown ethers, benzo-12-crown-4 (1) and naphtho-12-crown-4 (2), have been determined by X-ray analysis. Both structures are molecular. Compound1 is monoclonic,P21/b,a=8.466(3),b=8.019(3),c=33.590(10) Å, =90.99(3)o. The unit cell contains two crystallographically independent molecules of1 with similar conformations. Compound2 is also monoclinic,P21/a,a=24.148(8),b=14.535(4),c=7.987(5) Å, =102.87(2)o. Two independent molecules in the unit cell have significantly different conformations. Supplementary data relating to this publication have been deposited with the British Library as Supplementary Publication No. SUP 82145 (19 pages).  相似文献   

7.
Lipophilic derivatives of benzo-12-crown-4 and naphtho-12-crown-4 have been synthesized. The behavior of the parent compounds and their derivatives in membrane ion-selective electrodes have been studied. Selectivity changes have been observed with the rise in lipophilicity. Crystal structures of the NaI and KI complexes of benzo-12-crown-4 (1 and2) have been determined by X-ray analysis. The alkali metal and iodide ions are in direct contact in2 but not in1. Compound1 [Na(benzo-12-crown-4)2]·I is triclinic, witha=13.368(8),b=10.727(7),c=10.325(4) Å; =73.56(4),=77.73(4), =108.70(5)°;Z=2, space group is . Compound2 [K(benzo-12-crown-4)2·I] is monoclinic, witha=15.807(8),b=12.043(4),c=15.601(6) Å,=117.74(3)°;Z=4, space groupC2/c. In both compounds the cations interact with all oxygen atoms of two crown ether molecules. Correlation of the crystal structures and behavior of the crown ethers in ion-selective membrane electrodes is discussed. Supplementary Data related to this article have been deposited with the British Library as Supplementary Publication No. 82185 (15 pages).  相似文献   

8.
CrystalStructureof[La(NO_3)_3(12-crown-4)-(H_2O)](12-crown-4)MaoJiang-Gao;JinZhong-Sheng;YuFeng-Lan(LaboratoryofRareEarthChemi?..  相似文献   

9.
Complete structural characterization of dibenzo-18-crown-6·2 CH3NO2 and dibenzo-18-crown-6·2 CH3CN have been carried out, including location and refinement of the methyl hydrogen atoms. Dibenzo-18-crown-6·2 CH3NO2 is monoclinic,P21/c, with (at –150°C)a=9.573(2),b=14.636(2),c=33.471(7) Å, =93.77(2)°, andD calc=1.37 g cm–3 forZ=8. Interactions between the solvent methyl groups and the crown ethers and other solvent nitro groups associate the 1 : 2 complexes into polymeric chains alongb. The acetonitrile adduct exists as discreet 1 : 2 complexes in the solid state with C–H...O interactions exlusively to the ether. This complex is triclinic,P 1, with (at –150°C)a=9.458(6),b=9.570(5),c=14.404(5) Å, =73.18(4), =79.85(5), =66.82(6)°, andD calc=1.28 g cm–3 forZ=2. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82070 (22 pages).For part 4, see reference [1].  相似文献   

10.
An improved synthesis of 20-thiocrown-4 is reported, which exploits the Kellogg method of cesium carbonate in DMF mediated macrocyclization of precondensed synthones which converge at the cycloicosane structure. The crystal structure of 20-thiocrown-4 reveals a rectangular conformation for the free ligand. Each sulfur is in onegauche and oneanti torsion angle. Four carbon positions make up the corners. There are two short sides comprised of –C–C– torsion angle sequencesg ag and two long sides (aaa, g ag+). The S–C and C–C bond distances average 1.816(2) and 1.523(3) , respectively. Supplementary data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82147 (9 pages)  相似文献   

11.
Dibenzo-14-crown-4 (DB14C4) has a high selectivity for Li+. The rigidity of the molecule caused by the two benzene rings suggests that this is a preorganized ligand for metal ions and particularly for Li+. A single crystal structure study of the molecule was performed. The crystal data are: space groupP21,a = 12.811(2),b = 5.106(1),c = 12.816(3)Å, = 115.44(1)°,V = 757.0(2)Å3 withZ = 2. The structure was refined toR = 0.049 andR w, = 0.058 using 1804 unique data withF < 4(F). The conformation of the free ligand was found to be similar to that of the complexed ligand and the conformational parameters of the free ligand and its derivatives are compared to Li+ complexes of the ligand and its derivatives.This paper is dedicated to the memory of the late Dr C. J. Pedersen.  相似文献   

12.
An X-ray—diffraction study is reported for two molecular complexes containing 3,4-diamino-1,2,5-oxadiazole as guest (G) with 18-crown-6 (18-C-6) andcis-anti-cis-dicyclohexano-18-crown-6 (DCH-6B) as host. Both complexes are of the polymeric-chain structure with the guest molecule bridging two crown neighbours. ComplexI: [18-C-6*G*H2O], 111, monoclinic,P21/n,a=8.171(1),b=15.042(2),c=16.209(6) Å, =101.15(2)°, finalR-factor 0.068. ComplexII: [DCH-6B*G], 11, monoclinicC2/c,a=21.212(4),b=9.380(2),c=13.049(3) Å, =108.61(3)°, finalR 0.047.  相似文献   

13.
The X-ray crystal structure of naphtho-9-crown-3 ether, 1 is reported. The molecule crystallizes in the monoclinic P2(1)/c space group with a=8.866(2) Å, b=6.451(1) Å, c=20.110(4) Å and β=91.055(4)°, with Z=4. The 2:1 naphtho-9-crown-3 LiClO4 complex, 2 crystallizes in the triclinic P-1 space group with a=10.5075(10) Å, b=11.7283(11) Å, c=15.9921(15) Å and β=84.289(2)°, with Z=2. There are two distinct complexes found in the crystal, one ordered and one disordered in the crown portion of the molecule. 13C CPMAS NMR spectra for 1 and 2 are presented.  相似文献   

14.
The crystal structure of 18-crown-6 · 2(CH3CN) has been determined via data collection at –150°C. The structure consists of two crown molecules each hydrogen bonded to two acetonitrile moieties in the asymmetric unit, each residing around a center of inversion. The crown ethers display their fullD 3d symmetry; methyl ... O contacts range from 3.189(8) to 3.598(8) Å. There are no close contacts indicative of any interaction between the crown/2(CH3CN) units. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82056 (14 pages).For Part 3, see reference [1]  相似文献   

15.
A novel supramolecular complex, [Na2(2,3-naphtho-15-crown-5)2(NO3)][Cu(NO3)3(H2O)] (1), has been prepared and characterized by X-ray single crystal diffraction. The complex crystallizes in the triclinic system, space group Pī, with a?=?11.233(6), b?=?13.342(7), c?=?16.601(8)?Å, α?=?89.836(7), β?=?79.132(8), γ?=?66.545(7)°, V?=?2234(2)?Å3, Z?=?2 and final R 1(wR 2)?=?0.0467(0.1164). Novel coordination features and supramolecular architectures are found in the solid state of 1. Two [Na(2,3-naphtho-15-crown-5)]+ cations containing two different sodium coordination numbers (six and seven) are bridged by a tridentate nitrate group, to form a larger complex cation, [Na2(2,3-naphtho-15-crown-5)2(NO3)], which is assembled into a novel 1D zigzag chain-like structure through aromatic C–H?···?π interactions.  相似文献   

16.
Preparation and Crystal Structures of LaCl_3(12-crown-4)(MeOH)and[LaCl_3(phen)_2(H_2O)]·MeOHMaoJiang-Gao(FujianInstituteofResea...  相似文献   

17.
NH4(Pic)(DB18C6) (Pic=picrate and DB18C6=dibenzo-18-crown-6), (C26H30N4O13) FW 606.56, arthorhombic,Pmn21,a=26.045(5),b=12.055(3),c=8.982(3) Å,V=2820(1) Å3,Z=4,D c =1.429 g/cm3, CuK, =1.54184 Å, (CuK)=9.5 cm–1,F(000)=1272,T=298 K. The structure has been refined toR=0.0475 for 2617 unique observed reflections. In the lattice the 1:1 complex exists as a 2:2 dimer in which the crown are coupled through the Pic anions and NH4 + cations. The asymmetric unit consists of two independent half crown ethers of which two opposite O atoms are on the mirror plane, two half ammonium cations of which the N and two H atoms are also on the mirror plane while the Pic anion is in a general position. Relative to each other, the corwn ethers are shifted by about 7.3 Å alongb and 1 Å alongc. The 1:1 sandwich of NH4 with DB18C6 and Pic on dimerisation becomes a club pseudo-sandwich with three phenyl rings on either side of the mirror plane, thus forming a nearly parallel stack with a 3.6 Å inter-ring distance. The NH4 ions hold the structure; two H atoms on the mirror plane are hydrogen-bonded to the opposite oxygens of the crown located on the purely aliphatic part of the ring (2.10(1), 2.06(3) and 2.26(3), 2.05(1) Å) for the two independent crowns, respectively, while the other two H atoms form mirror-related bifurcated hydrogen bonds with the phenoxide oxygen (1.99(1) and 2.01(1) Å) and theo-nitrogen oxygen (2.44(2) and 2.34(1) Å) of the picrates. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82037 (29 pages)  相似文献   

18.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

19.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5).  相似文献   

20.
毛江高  金钟声 《结构化学》1994,13(4):276-280
CrystalStructuresofLn(NO_3)_3(Ln=La,Yb)Complexeswith12-crown-4MaoJiang-Gao;JinZhong-Sheng;YuFeng-Lan(LaboratoryofRareEarthChem...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号