首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王小露  万辉  管国锋 《物理化学学报》2008,24(11):2077-2082
采用密度泛函理论B3LYP/6-31+G(d,p)方法对氯化乙基吡啶([EPy]Cl)、溴化乙基吡啶([EPy]Br)的离子对进行了结构优化和频率分析, 并利用自洽反应场(SCRF)的导体极化连续模型(CPCM)考察了离子液体液相下的结构及相互作用. 得到了两种离子液体的离子对在气相、液相下最稳定结构及气相红外光谱特征值, 两种离子液体的离子对结构存在相似性, 红外光谱特征值与文献值比较吻合. 应用自然键轨道(NBO)理论分析了离子对中原子电荷分布及电荷转移情况, 结果证明两种离子液体中阴阳离子间除了静电相互作用外还存在着氢键作用. 通过对比气相及液相下的几何参数、相互作用能及NBO分析结果, 发现液相下阴阳离子的相互作用明显降低. 液相环境抵消了大部分阴阳离子间的静电作用, 导致液相下阴阳离子间相互作用的减小.  相似文献   

2.
Quantum chemical calculations of the structures and cation-anion interaction of 1-ethyl-3-methylimidazolium lactate ([Emim][LAC]) ion pair at the B3LYP/6-31++G** theoretical level were performed. The relevant geometrical characteristics, energy properties, intermolecular H-bonds (H-bonds), and calculated IR vibrations with respect to isolated ions were systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses were also employed to understand the nature of the interactions between cation and anion. The five most stable geometries were verified by analyzing the relative energies and interaction energies. It was found that the most of the C-H···O intermolecular H-bonds interactions in five stable conformers have some covalent character in nature. The elongation and red shift in IR spectrum of C-H bonds which involve in H-bonds is proved by electron transfers from the lone pairs of the carbonyl O atom of [LAC] to the C-H antibonding orbital of the [Emim]+. The interaction modes are more favorable when the carbonyl O atoms of [LAC] interact with the C2-H of the imidazolium ring and the C-H of the ethyl group through the formation of triple H-bonds.  相似文献   

3.
Quantum chemical calculations have been used to investigate the interaction between water molecules and ionic liquids based on the imidazolium cation with the anions [Cl(-)], [Br(-)], [BF(4)(-)], and [PF(6)(-)]. The predicted geometries and interaction energies implied that the water molecules interact with the Cl(-), Br(-), and BF(4)(-0 anions to form X(-)...W (X = Cl or Br, W = H(2)O), 2X-...2W, BF(4)(-)...W, and W...BF(4)(-)...W complexes. The hydrophobic PF(6)(-) anion could not form a stable complex with the water molecules at the density functional theory (DFT) level. Further studies indicate that the cation could also form a strong interaction with the water molecules. The 1-ethyl-3-methylimidazolium cation (Emim(+)) has been used as a model cation to investigate the interaction between a water molecule and a cation. In addition, the interaction between the ion pairs and the water was studied by using 1-ethyl-3-methylimidazolium chloride (Emim x Cl) as a model ionic liquid. The strengths of the interactions in these categories follow the trend anion-W > cation-W > ion pair-W.  相似文献   

4.
Halogen-hydride interactions between Z-X (Z = CN, NC and X = F, Cl, Br) as halogen donor and H-Mg-Y (Y = H, F, Cl, Br, CH(3)) as electron donor have been investigated through the use of Becke three-parameter hybrid exchange with Lee-Yang-Parr correlation (B3LYP), second-order M?ller-Plesset perturbation theory (MP2), and coupled-cluster single and double excitation (with triple excitations) [CCSD(T)] approaches. Geometry changes during the halogen-hydride interaction are accompanied by a mutual polarization of both partners with some charge transfer occurring from the electron donor subunit. Interaction energies computed at MP2 level vary from -1.23 to -2.99 kJ/mol for Z-F···H-Mg-Y complexes, indicating that the fluorine interactions are relatively very weak but not negligible. Instead, for chlorine- and bromine-containing complexes the interaction energies span from -5.78 to a maximum of -26.42 kJ/mol, which intimate that the interactions are comparable to conventional hydrogen bonding. Moreover, the calculated interaction energy was found to increase in magnitude with increasing positive electrostatic potential on the extension of Z-X bond. Analysis of geometric, vibrational frequency shift and the interaction energies indicates that, depending on the halogen, CN-X···H interactions are about 1.3-2.0 times stronger than NC-X···H interactions in which the halogen bonds to carbon. We also identified a clear dependence of the halogen-hydride bond strength on the electron-donating or -withdrawing effect of the substituent in the H-Mg-Y subunits. Furthermore, the electronic and structural properties of the resulting complexes have been unveiled by means of the atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Finally, several correlative relationships between interaction energies and various properties such as binding distance, frequency shift, molecular electrostatic potential, and intermolecular density at bond critical point have been checked for all studied systems.  相似文献   

5.
Two types of halogen...halide synthons are investigated on the basis of theoretical and crystallographic studies; the simple halogen...halide synthons and the charge assisted halogen...halide synthons. The former interactions were investigated theoretically (ab initio) by studying the energy of interaction of a halide anion with a halocarbon species as a function of Y...X- separation distance and the C-Y...X- angle in a series of complexes (R-Y...X-, R=methyl, phenyl, acetyl or pyridyl; Y=F, Cl, Br, or I; X-=F-, Cl-, Br-, or I-). The theoretical study of the latter interaction type was investigated in only one system, the [(4BP)Cl]2 dimer, (4BP=4-bromopyrdinium cation). Crystal structure determinations, to complement the latter theoretical calculations, were performed on 13 n-chloropyridinium and n-bromopyridinium halide salts (n=2-4). The theoretical and crystallographic studies indicate that these interactions are controlled by electrostatics and are characterized by linear C-Y...X- angles and separation distances less than the sum of van der Waals radius (rvdW) of the halogen atom and the ionic radii of the halide anion. The strength of these contacts from calculations varies from weak or absent, e.g., H3C-Cl...I-, to very strong, e.g., HCC-I...F- (energy of interaction ca. -153 kJ/mol). The strengths of these contacts are influenced by four factors: (a) the type of the halide anion; (b) the type of the halogen atom; (c) the hybridization of the ipso carbon; (d) the nature of the functional groups. The calculations also show that charge assisted halogen...halide synthons have a comparable strength to simple halogen...halide synthons. The nature of these contacts is explained on the basis of an electrostatic model.  相似文献   

6.
To investigate the nature of nonbonded Se...O interactions, three series of 2-substituted benzeneselenenyl derivatives [2-(CHO)C6H4SeX (1), 2-(CH2OH)C6H4SeX, (2), 2-(CH2OiPr)C6H4SeX (3); X = Cl, Br, CN, SPh, SeAr, Me] were synthesized. The 17O NMR absorption observed for 17O-enriched aldehydes 1 appeared upfield relative to benzaldehyde (PhCHO), while the opposite downfield shifts relative to benzyl alcohol (PhCH2OH) were observed for 17O-enriched alcohols 2 and ethers 3. The magnitude of both the upfield and the downfield shifts became larger as the electron-withdrawing ability of a substituent X increased. Quantum chemical calculations at the B3LYP level revealed that for all model compounds the most stable conformer has an intramolecular nonbonded Se.O interaction. Thus, the relative 17O NMR chemical shifts (DeltadeltaO) for 1-3 would reflect the strengths of the Se...O interactions. The natural bond orbital (NBO) analysis demonstrated that the stabilization energy due to an nO --> sigma Se-X orbital interaction (ESe...O) correlates with the Se...O atomic distance on a single curve irrespective of the type of the O atom. On the other hand, the atoms in molecules (AIM) analysis showed that the nonbonded Se...O interactions can be characterized by the presence of a bond critical point, the total energy density (HSe...O) of which decreases with strengthening of the interaction. The results suggested that Se...O interactions have a dominant covalent character rather than an electrostatic one.  相似文献   

7.
在MP2水平下对被定义为"电荷转移复合物(CTC)"的苯(C6H6)-卤素分子X2(X=F, Cl, Br, I)相互作用体系进行了量子化学研究. 在优化所得C6H6-X2(X=F, Cl, Br, I)复合物的平衡几何结构中, 卤素分子X2接近垂直指向苯环上碳-碳双键的中心. 自然键轨道(NBO)分析结果表明, 苯-卤素体系中电荷转移的数量很少. 对称性匹配微扰理论(Symmetry-adapted perturbation theory, SAPT) 能量分解结果显示, 在4个复合物体系中, 静电作用的贡献相对较小(只占总吸引作用的20%左右), 对于C6H6-F2体系, 色散作用是其主要吸引作用, 对于C6H6-Cl2, C6H6-Br2和C6H6-I2 体系, 诱导作用则是其主要的吸引作用, 从F到I, 色散作用逐渐减弱, 诱导作用逐渐增强, 表明在电子相关水平上将苯-卤素体系称为"电荷转移复合物"的说法并不确切.  相似文献   

8.
Basu A  Das G 《Inorganic chemistry》2012,51(2):882-889
A halide binding study of a newly synthesized neutral acyclic receptor LH(2) with a thiadiazole spacer has been methodically performed both in solution and in the solid state. Crystal structure analysis of the halide complexes elucidate the fact that fluoride forms an unusual 1:1 hyrogen-bonded complex with monodeprotonated receptor, whereas in the case of other congeners, such as chloride and bromide, the receptor binds two halide anions along with formation of a halide-bridged 1D polymeric chain network by participation of N-H···X(-) and aromatic C-H···X(-) hydrogen-bonding (where X = Cl and Br) interactions. The presence of a rigid thiadiazole spacer presumably opens up enough space for capturing two halide anions by a single receptor molecule, where the coordinated -NH protons are pointed in the same direction with respect to the spacer and eventually favor formation of halide (Cl(-) and Br(-)) induced polymeric architecture, although no obvious chloride- or bromide-directed polymeric assembly is found in solution. A significant red shift of 243 nm in the absorption spectra of LH(2) was solely observed in the presence of excess fluoride anion, which enables LH(2) as an efficient colorimetric sensor for optical detection of fluoride anion (yellow to blue). Furthermore, spectroscopic titration experiments with increasing equivalents of fluoride anion suggest formation of a H-bonded complex with subsequent stepwise deprotonation of two N-H groups, which can be visually monitored by a change in color from yellow to blue via pink.  相似文献   

9.
The structures, infrared spectra, and electronic properties of the N7,N9-dimethylguaninium chloride have been studied. The interaction of one cation with one to four Cl anions and one Cl anion with two cations were investigated. Fifteen stable conformers are obtained. It is found that there are four acidic regions in the vicinity of the guaninium cations. In these regions, the cation could H-bond with one to three Cl anions but no more than three nearest anions. One Cl anion could H-bond with two cations. Additionally, evidence of a Cl...pi interaction between the anion and cation is observed. Among these structures, one cation interaction with two anions and two cations interaction with one anion have the larger interaction energies than the other series. Natural bond orbital analyses and molecular orbitals reveal that the charge transfer from anion(s) to the cation(s) occurs mainly through either the Cllp --> sigma C-H, Cllp --> sigma N-H, or Cllp --> pi C8-N7 interactions. The interaction between Cl and sigma (C/N-H) or pi C-N produces a small bond order. This indicates that the Cl...H (Cl...pi) interaction exhibits a weak covalent character and suggests a strong ionic H-bond (Cl...pi bond). What's more, formation of Cl...H/Cl...pi bond decreases the bond order of the associated C/N-H bond or C8-N7 bond. In addition, examination of vibrational spectrum of each conformer explains the origin of H-bonding character.  相似文献   

10.
吴阳  张甜甜  于宁 《物理化学学报》2009,25(8):1689-1696
利用密度泛函理论B3LYP方法, 在6-311+G(d,p)水平上, 对1-乙基-3-甲基咪唑阳离子[Emim]+与天冬酰胺阴离子[Asn]-形成的氨基酸离子液体气态阴阳离子对([Emim][Asn])进行理论研究. 通过几何结构优化和频率分析得到势能面上的五个稳定构型. [Emim]+和[Asn]-之间能够形成较强的氢键相互作用, 零点能校正后的能量在-373.96至-326.28 kJ·mol-1之间. 其稳定化能主要来源于[Asn]-中羰基O的孤对电子lp(O)与[Emim]+中C—H反键轨道σ*(C—H)之间的相互作用: lp(O)→σ*(C—H). 红外光谱特征和自然布居分析(NPA)计算表明咪唑阳离子中参与形成氢键的C—H键振动的红移值、阴阳离子间的电荷转移与氢键相互作用能成正比关系. 分子中的原子(AIM)理论分析得到[Emim]+和[Asn]-之间的氢键相互作用以静电作用为主. 通过计算结果初步探讨影响氨基酸离子液体玻璃化温度Tg的结构因素.  相似文献   

11.
The electrocrystallization of fluorinated bis(2,2'-difluoropropylenedithio)tetrathiafulvalene (1) in the presence of linear (ICl2-, IBr2-, I2Br-) or cluster ([Mo6Cl14]2-) anions affords 1:1 and 2:1 cation radical salts such as [1][ICl2] and [1]2[Mo6Cl14].(CH3CN)2. In both salts, the 1*+ radical ion adopts a boat conformation and envelops the anion through C-H...Hal(anion) (Hal(anion) = Cl, Br, I) hydrogen bonds. This demonstrates the activating role of the neighboring electron-withdrawing CF2 moieties in the stabilization of bi- or trimolecular neutral entities. With smaller linear anions, fluorine segregation controls the solid-state associations of the bimolecular [1]*+[X] entities, and gives rise to layered materials with a limited overlap interaction between the open-shell organic cations and magnetic spin chain behavior. With the larger [Mo6Cl14]2 ions, a strong overlap interaction between radical cations gives rise to diamagnetic [1]2(2+) dimers, which alternate with the cluster anions to form hybrid organic/inorganic ...[1]2(2+)[Mo6Cl14]2... chains. This behavior is also observed in [2]2(2+)[Mo6Cl14]2-.(CH2Cl2)2, in which compound 2 is the unsymmetrically substituted (ethylenedithio)(2,2'-difluoropropylenedithio)tetrathiafulvalene. On the other hand, the unsymmetrically substituted 2,2'-difluoropropylenedithiotetrathiafulvalene (3) affords a mixed-valence 4:1 salt with [Mo6Cl14]2, which is formulated as [3]4[Mo6Cl14].(CH3CN)2. This semiconducting salt is characterized by the coexistence of both the fluorine/fluorine segregation (with solvent inclusion) and the organic/inorganic segregation (with delocalized overlap interactions). Both Csp2-H...Cl and Csp3-H...Cl hydrogen bonds facilitate the stabilization of the organic/inorganic interface and the presence of conducting organic slabs.  相似文献   

12.
In this study, novel ionic liquids formed between the 1-ethyl-3-methylimidazolium cation [emim]+ and the glycine anion [Gly]- have been investigated theoretically. The relevant geometrical characteristics, energy properties, the characters of the intermolecular hydrogen bonds (H bonds), and the possibility of proton transfer as well as IR characteristics have been systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses have also been applied to understand the nature of the interactions between ionic pairs in ionic liquids. The most stable geometries have been determined by analyzing the relative energies and interaction energies, where the C-H...O intermolecular H bonds involving the protons attached to the imidazolium ring have been found to possess partial covalent character in nature. Electron transfers from the lone pairs of the carbonyl O atom of [Gly]- to the C-H antibonding orbital of the [emim]+ can explain the elongation and red shift of the C-H stretching frequency. The interaction modes are more favorable when the carbonyl O atoms of [Gly]- interact with the C2-H of the imidazolium ring and the C-H of the methyl group through the formation of double H bonds. The origin of the high stability of the amino acid ionic liquids observed experimentally may be attributed to the nonexistence of the proton-transferred products (neutral pairs) together with the large energy needed for separation of the ionic pairs. Additionally, the characteristics of the IR spectra have been analyzed to demonstrate the variants of the molecular structure of the [emim]+[Gly]- ionic liquids.  相似文献   

13.
The mixed cation salts, (dimethylammonium)(3,5-dimethylpyridinium)CuX4 (X = Cl, Br), henceforth (DMA)(35DMP)CuX4, are new examples of spin-ladders based on nonbonded halide...halide interactions between CuX4(2-) anions. In these structures, double rows of the CuX4(2-) anions are sheathed by the 35DMP(+) cations, while the edges are capped by the DMA(+) cations. For the Br salt, the Br...Br contacts that define the rungs of the ladder are 4.017 A in length, while those that define the rails are 3.983 A. For the Cl salt, the corresponding lengths are 3.967 and 4.045 A. The susceptibility data for the Br salt exhibits a maximum at approximately 5.5 K, and fitting the data to the spin 1/2 antiferromagnetic ladder model yields 2J(rail)/k = -7.95 K and 2J(rung)/k = -4.07 K. The exchange coupling is much weaker in the Cl salt, no maximum in chi is observed down to 1.8 K, and the corresponding exchange constants are -1.59 and -1.25 K, respectively. An analysis is made of the structural factors involved in the J(rung) pathway.  相似文献   

14.
The structures and conformational properties of 1-alkyl-3-methylimidazolium halide ionic liquids have been studied with a Becke's 3 Parameter functional method. The interaction mechanisms between the cation and the anion in 1-ethyl-3-methylimidazolium (Emim+) halide and 1-butyl-3-methylimidazolium (Bmim+) halide ionic liquids were investigated using 6-31G*, 6-31++G**, and 6-311++G** basis sets. Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Halide ions (Cl- or Br-) have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four activity regions in the vicinity of the imidazolium cations, in these regions the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can form hydrogen bond interactions with one, two or three but no more than three nearest halide anions. The halide ions are situated in hydrogen bond positions rather than at random.  相似文献   

15.
NMR studies of reactions between some N-heterocyclic and acyclic diamino phosphenium ions (R2N)2P+ and P-chlorophosphines (R2N)2PCl suggest that the reactants interact via chloride scrambling rather than by formation of P-P bonded phosphenium-phosphine complexes. Computational studies of reactions between model ions (R'2N)2P+ and neutral phosphines (R'2N)2PX (X = F, Cl, Br) confirm that in the gas phase the formation of halide-bridged adducts is indeed preferred and only for the most electrophilic cation an alternative but energetically less favorable P-P bonded structure was found. The halide-bridged adducts feature nearly C2-symmetrical P...X...P arrays (for X = Cl, Br) or are loose molecular complexes arising from electrostatic interaction between nearly unperturbed fragments (for X = F). In the latter case, a P...F...P-bridged structure was located as a transition state of a fluoride transfer reaction. The formation of the adducts appears to be controlled by electrostatic rather than orbital interactions. Consideration of solvent effects by a polarizable continuum model indicates a destabilization of the adducts versus the isolated fragments and suggests that in solution extensive dissociation occurs. The computations further reveal a large solvent-induced lengthening of the P-Cl bonds in N-heterocyclic halogenophosphines which implies that the unusual P-Cl distances observed for these species are, to a large part, attributable to intermolecular influences.  相似文献   

16.
Density functional theory (DFT) calculations have been performed to study the structures and stability of X?·(HX)n=2–5 clusters where X = F, Cl, Br at B3LYP/6‐311++G** level of theory. The presence of halide ions in these clusters disintegrates the hydrogen halide clusters. All the hydrogen halides are then hydrogen bonded to the centrally placed halide ions, thereby forming multiple hydrogen bonds. The interaction energies have been corrected for the basis set superposition error (BSSE) using Boy's counterpoise correction method. Evidence for the destruction of hydrogen bonds in hydrogen halide clusters due to the presence of halide ions is further obtained from topological analysis and natural bond orbital analysis. The chemical hardness and chemical potential have been calculated for all the anion clusters. The above analysis reveals that hydrogen bonding in these systems is not an essentially electrostatic interaction. The nature of the stabilization interactions operative in these multiple hydrogen‐bonded clusters has been explained in terms of many‐body contribution to interaction energies. From these studies, an attempt has been made to understand the nature of the molecular properties resulting from different electronegativities of the halogens. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

17.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

18.
Vega A  Saillard JY 《Inorganic chemistry》2004,43(13):4012-4018
DFT calculations on Cu(4)(mu3-X)4L4 (X = H, CH(3), CCH, F, Cl, Br, I; L = NH(3), PH(3)) indicate that, regardless of its nature, X- acts essentially as a two-electron sigma-type ligand and that the covalent part of the Cu...Cu bonding depends mainly upon the a1 component of the orbital interaction between the L4Cu4(4+) and X4(4-) fragments. The first excited state corresponds to the occupation of a Cu...Cu bonding LUMO of a1 symmetry, which is of dominant Cu(4s/4p) character when X- is an electronegative ligand, such as a halide. Consequently, this excited state is computed to exhibit Cu...Cu distances shorter than those in the ground state, in agreement with the luminescence properties of this type of compound.  相似文献   

19.
To investigate the nature of weak nonbonded selenium...halogen interactions (Se...X interactions; X = F, Cl, and Br), three types of model compounds [2-(CH(2)X)C(6)H(4)SeY (1-3), 3-(CH(2)X)-2-C(10)H(6)SeY (4-6), and 2-XC(6)H(4)CH(2)SeY (7-9); Y = CN, Cl, Br, SeAr, and Me] were synthesized, and their (77)Se NMR spectroscopic behaviors were analyzed in CDCl(3). The gradual upfield shifts of (77)Se NMR absorptions observed for series 1-3 and 4-6 suggested that the strength of Se...X interaction decreases in the order of Se...F > Se...Cl > Se...Br. The quantum chemical calculations at the B3LYP/631H level using the polarizable continuum model (PCM) revealed that the most stable conformer for 1-3 is the one with an intramolecular short Se...X atomic contact in CHCl(3) (epsilon = 4.9) and also that the n(X) --> sigma(Se-Y) orbital interaction (E(Se...X)) can reasonably explain the order of strength for the Se...X interactions. On the other hand, the (77)Se NMR absorptions observed for series 7-9 did not shift significantly from the reference compounds (C(6)H(5)CH(2)SeY), indicating the absence of the Se...X interaction for 7-9 presumably due to attenuation of basicity for the halogen atom that is substituted directly to the aromatic ring. These observations suggested that the n(X) --> sigma(Se-Y) orbital interaction is a dominant factor for formation of weak Se...X interactions. Electron correlation was also suggested to be important for the stability.  相似文献   

20.
To deepen the understanding the interactions of thiophenic compounds in ionic liquids, we have performed a systemic study on the electronic structures, and topological properties of interactions between N-ethyl-N-ethylimidazolium diethyl phosphate ([EEIM][DEP]) ionic liquid and 3-methylthiophene (3-MT), benzothiophene (BT), or dibenzothiophene (DBT) using density functional theory. From NBO atomic charges and electrostatic potential analyses, most of the positive charge is located on C2–H2 in the [EEIM] cation, and the negative charge is focused on oxygen atoms in [DEP] anion, implying oxygen atoms in [DEP] should easily attack C2–H2 in [EEIM]. The electrostatic interaction between anion and cation may be dominant for the formation of the [EEIM]–[DEP] ion pair. The large stabilizing effect is due to the strong orbital interactions between the antibonding orbital of proton donor σ*(C2–H2) in [EEIM] cation and the lone pairs of proton acceptor LP(O) in [DEP] anion. A common feature of [EEIM][DEP], [EEIM][DEP]-3-MT/BT/DBT complexes is the presence of hydrogen bonds between [EEIM] cation and [DEP] anion. This work has also given the interacting mechanism of 3-MT, BT, and DBT adsorption on [EEIM][DEP] ionic liquid. Both [EEIM] cation and [DEP] anion are shown to play important roles in interactions between 3-MT, BT, DBT and [EEIM][DEP], which has been corroborated by NBO and AIM analyses. The π···π, π···C–H and hydrogen bonding interactions occur between [EEIM][DEP] and 3-MT, BT, DBT. The strength of sulfur involved interactions between 3-MT, BT, DBT and [EEIM][DEP] follows the order of 3-MT > BT > DBT. The order of interaction energies between [EEIM][DEP] and 3-MT, BT, DBT is 3-MT < BT < DBT, in agreement with the order of extractive selectivity from fuel oils (DBT > BT > 3-MT) in terms of sulfur partition coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号