首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Response theory up to infinite order is combined with the explicitly correlated coupled-cluster singles and doubles model including linear-r(12) corrections, CCSD(R12). The additional terms introduced by the linear-r(12) contributions, not present in the conventional CCSD calculation, are derived and discussed with respect to the extra costs required for their evaluation. An implementation is presented up to the cubic response function for one-electron perturbations, i.e., up to frequency-dependent second hyperpolarizabilities. As first applications the authors computed the electronic polarizabilities and second hyperpolarizabilities of BH, N(2), and formaldehyde and show that the improvement in the one-electron basis set convergence known from the R12 method for ground state energies is retained for higher-order optical properties. Frequency-dependent results are presented for the second hyperpolarizability of N(2).  相似文献   

2.
3.
A simplified singles-and-doubles linear-r(12) corrected coupled-cluster model, denoted CCSD(R12), is proposed and compared with the complete singles-and-doubles linear-r(12) coupled-cluster method CCSD-R12. An orthonormal auxiliary basis set is used for the resolution-of-the-identity approximation to calculate three-electron integrals needed in the linear-r(12) Ansatz. Basis-set convergence is investigated for a selected set of atoms and small molecules. In a large basis, the CCSD(R12) model provides an excellent approximation to the full linear-r(12) energy contribution, whereas the magnitude of this contribution is significantly overestimated at the level of second-order perturbation theory.  相似文献   

4.
As electronic structure methods are being used to obtain quantitatively accurate reaction energies and barrier heights for increasingly larger systems, the choice of an efficient basis set is becoming more critical. The optimum strategy for achieving basis set convergence can depend on the way that electron correlation is treated and can take advantage of flexibility in the order in which basis functions are added. Here we study several approaches for estimating accurate reaction energies and barrier heights from post-Hartree-Fock electronic structure calculations. First and second, we evaluate methods of estimating the basis set limit of second order Mo?ller-Plesset perturbation theory and of coupled cluster theory with single and double excitations and a quasiperturbative treatment of connected triple excitations by using explicitly correlated basis functions (in the F12a implementation) along with valence, polarization, and diffuse one-electron basis functions. Third, we test the scheme of adding a higher-order correction to MP2 results (sometimes called MP2∕CBS + ΔCCSD(T)). Finally, we evaluate the basis set requirements of these methods in light of comparisons to Weizmann-3.2, Weizmann-4, and CCSDT(2)(Q)∕CBS+CV+R results.  相似文献   

5.
The explicitly-correlated coupled-cluster method CCSD(T)(R12) is extended to include F12 geminal basis functions that decay exponentially with the interelectronic distance and reproduce the form of the average Coulomb hole more accurately than linear-r(12). Equations derived using the Ansatz 2 strong orthogonality projector are presented. The convergence of the correlation energy with orbital basis set for the new CCSD(T)(F12) method is studied and found to be rapid, 98% of the basis set limit correlation energy is typically recovered using triple-zeta orbital basis sets. The performance for reaction enthalpies is assessed via a test set of 15 reactions involving 23 molecules. The title statement is found to hold equally true for total and relative correlation energies.  相似文献   

6.
The basis set convergence of weak interaction energies for dimers of noble gases helium through krypton is studied for six variants of the explicitly correlated, frozen geminal coupled-cluster singles, doubles, and noniterative triples [CCSD(T)-F12] approach: the CCSD(T)-F12a, CCSD(T)-F12b, and CCSD(T)(F12*) methods with scaled and unscaled triples. These dimers were chosen because CCSD(T) complete-basis-set (CBS) limit benchmarks are available for them to a particularly high precision. The dependence of interaction energies on the auxiliary basis sets has been investigated and it was found that the default resolution-of-identity sets cc-pVXZ/JKFIT are far from adequate in this case. Overall, employing the explicitly correlated approach clearly speeds up the basis set convergence of CCSD(T) interaction energies, however, quite surprisingly, the improvement is not as large as the one achieved by a simple addition of bond functions to the orbital basis set. Bond functions substantially improve the CCSD(T)-F12 interaction energies as well. For small and moderate bases with bond functions, the accuracy delivered by the CCSD(T)-F12 approach cannot be matched by conventional CCSD(T). However, the latter method in the largest available bases still delivers the CBS limit to a better precision than CCSD(T)-F12 in the largest bases available for that approach. Our calculations suggest that the primary reason for the limited accuracy of the large-basis CCSD(T)-F12 treatment are the approximations made at the CCSD-F12 level and the non-explicitly correlated treatment of triples. In contrast, the explicitly correlated second-order Mo?ller-Plesset perturbation theory (MP2-F12) approach is able to pinpoint the complete-basis-set limit MP2 interaction energies of rare gas dimers to a better precision than conventional MP2. Finally, we report and analyze an unexpected failure of the CCSD(T)-F12 method to deliver the core-core and core-valence correlation corrections to interaction energies consistently and accurately.  相似文献   

7.
A general form of orbital invariant explicitly correlated second-order closed-shell Moller-Plesset perturbation theory (MP2-F12) is derived, and compact working equations are presented. Many-electron integrals are avoided by resolution of the identity (RI) approximations using the complementary auxiliary basis set approach. A hierarchy of well defined levels of approximation is introduced, differing from the exact theory by the neglect of terms involving matrix elements over the Fock operator. The most accurate method is denoted as MP2-F12/3B. This assumes only that Fock matrix elements between occupied orbitals and orbitals outside the auxiliary basis set are negligible. For the chosen ansatz for the first-order wave function this is exact if the auxiliary basis is complete. In the next lower approximation it is assumed that the occupied orbital space is closed under action of the Fock operator [generalized Brillouin condition (GBC)]; this is equivalent to approximation 2B of Klopper and Samson [J. Chem. Phys. 116, 6397 (2002)]. Further approximations can be introduced by assuming the extended Brillouin condition (EBC) or by neglecting certain terms involving the exchange operator. A new approximation MP2-F12/3C, which is closely related to the MP2-R12/C method recently proposed by Kedzuch et al. [Int. J. Quantum Chem. 105, 929 (2005)] is described. In the limit of a complete RI basis this method is equivalent to MP2-F12/3B. The effect of the various approximations (GBC, EBC, and exchange) is tested by studying the convergence of the correlation energies with respect to the atomic orbital and auxiliary basis sets for 21 molecules. The accuracy of relative energies is demonstrated for 16 chemical reactions. Approximation 3C is found to perform equally well as the computationally more demanding approximation 3B. The reaction energies obtained with smaller basis sets are found to be most accurate if the orbital-variant diagonal Ansatz combined with localized orbitals is used for the first-order wave function. This unexpected result is attributed to geminal basis set superposition errors present in the formally more rigorous orbital invariant methods.  相似文献   

8.
An augmented valence triple-zeta basis set, referred to as G3Large, is reported for the first-row transition metal elements Sc through Zn. The basis set is constructed in a manner similar to the G3Large basis set developed previously for other elements (H-Ar, K, Ca, Ga-Kr) and used as a key component in Gaussian-3 theory. It is based on a contraction of a set of 15s13p5d Gaussian primitives to 8s7p3d, and also includes sets of f and g polarization functions, diffuse spd functions, and core df polarization functions. The basis set is evaluated with triples-augmented coupled cluster [CCSD(T)] and Brueckner orbital [BD(T)] methods for a small test set involving energies of atoms, atomic ions, and diatomic hydrides. It performs well for the low-lying s-->d excitation energies of atoms, atomic ionization energies, and the dissociation energies of the diatomic hydrides. The Brueckner orbital-based BD(T) method performs substantially better than Hartree-Fock-based CCSD(T) for molecules such as NiH, where the starting unrestricted Hartree-Fock wavefunction suffers from a high degree of spin contamination. Comparison with available data for geometries of transition metal hydrides also shows good agreement. A smaller basis set without core polarization functions, G3MP2Large, is also defined.  相似文献   

9.
An explicitly correlated complete active space second-order perturbation (CASPT2-F12) method is presented which strongly accelerates the convergence of CASPT2 energies and properties with respect to the basis set size. A Slater-type geminal function is employed as a correlation factor to represent the electron-electron cusp of the wave function. The explicitly correlated terms in the wave function are internally contracted. The required density matrix elements and coupling coefficients are the same as in conventional CASPT2, and the additional computational effort for the F12 correction is small. The CASPT2-F12 method is applied to the singlet-triplet splitting of methylene, the dissociation energy of ozone, and low-lying excited states of pyrrole.  相似文献   

10.
Three major obstacles in electronic structure theory are the steep scalings of computer time with respect to system size and basis size and the slow convergence of correlation energies in orbital basis sets. Three solutions to these are, respectively, local methods, density fitting, and explicit correlation; in this work, we combine all three to produce a low-order scaling method that can achieve accurate MP2 energies for large systems. The errors introduced by the local approximations into the R12 treatment are analyzed for 16 chemical reactions involving 21 molecules. Weak pair approximations, as well as local resolution of the identity approximations, are tested for molecules with up to 49 atoms, over 100 correlated electrons, and over 1000 basis functions.  相似文献   

11.
We have developed and implemented pseudospectral time‐dependent density‐functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm–Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time‐dependent density‐functional theory with full linear response (PS‐FLR‐TDDFT) and within the Tamm–Dancoff approximation (PS‐TDA‐TDDFT) for G2 set molecules using B3LYP/6‐31G** show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS‐FLR‐TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS‐FLR‐TDDFT and best estimations demonstrate that the accuracy of both PS‐FLR‐TDDFT and PS‐TDA‐TDDFT. Calculations for a set of medium‐sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6‐31G** basis set show PS‐TDA‐TDDFT provides 19‐ to 34‐fold speedups for Cn fullerenes with 450–1470 basis functions, 11‐ to 32‐fold speedups for nanotubes with 660–3180 basis functions, and 9‐ to 16‐fold speedups for organic molecules with 540–1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46‐residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6‐31G** basis set with up to 8100 basis functions show that PS‐FLR‐TDDFT CPU time scales as N2.05 with the number of basis functions. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
A new explicitly correlated CCSD(T)-F12 approximation is presented and tested for 23 molecules and 15 chemical reactions. The F12 correction strongly improves the basis set convergence of correlation and reaction energies. Errors of the Hartree-Fock contributions are effectively removed by including MP2 single excitations into the auxiliary basis set. Using aug-cc-pVTZ basis sets the CCSD(T)-F12 calculations are more accurate and two orders of magnitude faster than standard CCSD(T)/aug-cc-pV5Z calculations.  相似文献   

13.
14.
《Chemical physics letters》2003,367(5-6):723-729
We show that the incidental numerical instabilities in explicitly correlated coupled cluster R12 (CC-R12) calculations can be a priori removed by using systematically developed R12 suited basis sets. Those are quite different from basis sets developed for conventional calculations mainly in polarization functions. Using even tempered polarization sets for carbon and oxygen we were able to define compromise R12 suited bases which describe equally well atomic ground states, positive and negative ions and electric field polarized atoms. Corresponding energies obtained with such ‘R12 universal’ sets remain accurate to within a few μEh with respect to the ‘R12 optimal’ bases of individual systems.  相似文献   

15.
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.  相似文献   

16.
Second order R12 theory is presented and derived alternatively using the second quantized hole-particle formalism. We have shown that in order to ensure the strong orthogonality between the R12 and the conventional part of the wave function, the explicit use of projection operators can be easily avoided by an appropriate partitioning of the involved operators to parts which are fully describable within the computational orbital basis and complementary parts that involve imaginary orbitals from the complete orbital basis. Various Hamiltonian splittings are discussed and computationally investigated for a set of nine molecules and their atomization energies. If no generalized Brillouin condition is assumed, with all relevant partitionings the one-particle contribution arising in the explicitly correlated part of the first order wave function has to be considered and has a significant role when smaller atomic orbital basis sets are used. The most appropriate Hamiltonian splitting results if one follows the conventional perturbation theory for a general non-Hartree-Fock reference. Then, no couplings between the R12 part and the conventional part arise within the first order wave function. The computationally most favorable splitting when the whole complementary part of the Hamiltonian is treated as a perturbation fails badly. These conclusions also apply to MP2-F12 approaches with different correlation factors.  相似文献   

17.
Explicitly correlated R12 methods using a single short-range correlation factor (also known as F12 methods) have dramatically smaller basis set errors compared to the standard wave function counterparts, even when used with small basis sets. Correlations on several length scales, however, may not be described efficiently with one correlation factor. Here the authors explore a more general MP2-R12 method in which each electron pair uses a set of (contracted) Gaussian-type geminals (GTGs) with fixed exponents, whose coefficients are optimized linearly. The following features distinguish the current method from related explicitly correlated approaches published in the literature: (1) only two-electron integrals are needed, (2) the only approximations are the resolution of the identity and the generalized Brillouin condition, (3) only linear parameters are optimized, and (4) an arbitrary number of (non-)contracted GTGs can appear. The present method using only three GTGs and a double-zeta quality basis computed valence correlation energies for a set of 20 small molecules only 2.2% removed from the basis set limit. The average basis set error reduces to 1.2% using a near-complete set of seven GTGs with the double-zeta basis set. The conventional MP2 energies computed with much larger quadruple, quintuple, and sextuple basis sets all had larger average errors: 4.6%, 2.4%, and 1.5%, respectively. The new method compares well to the published MP2-R12 method using a single Slater-type geminal (STG) correlation factor. For example, the average basis set error in the absolute MP2-R12 energy obtained with the exp(-r12) correlation factor is 1.7%. Correlation contribution to atomization energies evaluated with the present method and with the STG-based method only required a double-zeta basis set to exceed the precision of the conventional sextuple-zeta result. The new method is shown to always be numerically stable if linear dependencies are removed from the two-particle basis and the zeroth-order Hamiltonian matrix is made positive definite.  相似文献   

18.
The basis set convergence of explicitly correlated double-hybrid density functional theory (DFT) is investigated using the B2GP-PLYP functional. As reference values, we use basis set limit B2GP-PLYP-F12 reaction energies extrapolated from the aug(')-cc-pV(Q+d)Z and aug(')-cc-pV(5+d)Z basis sets. Explicitly correlated double-hybrid DFT calculations converge significantly faster to the basis set limit than conventional calculations done with basis sets saturated up to the same angular momentum (typically, one "gains" one angular momentum in the explicitly correlated calculations). In explicitly correlated F12 calculations the VnZ-F12 basis sets converge faster than the orbital A(')VnZ basis sets. Furthermore, basis set convergence of the MP2-F12 component is apparently faster than that of the underlying Kohn-Sham calculation. Therefore, the most cost-effective approach consists of combining the MP2-F12 correlation energy from a comparatively small basis set such as VDZ-F12 with a DFT energy from a larger basis set such as aug(')-cc-pV(T+d)Z.  相似文献   

19.
An internally contracted multireference configuration interaction is developed which employs wave functions that explicitly depend on the electron-electron distance (MRCI-F12). This MRCI-F12 method has the same applicability as the MRCI method, while having much improved basis-set convergence with little extra computational cost. The F12b approximation is used to arrive at a computationally efficient implementation. The MRCI-F12 method is applied to the singlet-triplet separation of methylene, the dissociation energy of ozone, properties of diatomic molecules, and the reaction barrier and exothermicity of the F + H(2) reaction. These examples demonstrate that already with basis sets of moderate size the method provides near complete basis set MRCI accuracy, and hence quantitative agreement with the experimental data. As a side product, we have also implemented the explicitly correlated multireference averaged coupled pair functional method (MRACPF-F12).  相似文献   

20.
We present an explicitly correlated version of the high-spin open-shell RMP2 method. The theory is derived in a unitarily invariant form, which is suitable for the insertion of local approximations. It is demonstrated that the rapid basis set convergence of closed-shell MP2-F12 is also achieved in RMP2-F12, and similar Ansatze and approximations can be employed. All integrals are computed using efficient density fitting approximations, and many-electron integrals are avoided using resolution of the identity approximations. The performance of the method is demonstrated by benchmark calculations on a large set of ionization potentials, electron affinities and atomization energies. Using triple-zeta basis sets RMP2-F12 yields results that are closer to the basis set limit than standard RMP2 with augmented quintuple-zeta basis sets for all properties. Different variants of perturbative corrections for the open-shell Hartree-Fock treatment are described and tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号