首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to connect the mixing of and thereby the relaxation between the amide I and amide II modes of the peptide building block N-methyl acetamide. This map enables us to extract a fluctuating vibrational Hamiltonian from molecular dynamics trajectories. The linear absorption spectrum, population transfer, and two-dimensional infrared spectra are then obtained from this Hamiltonian by numerical integration of the Schrodinger equation. We show that the amide I/amide II cross peaks in two-dimensional infrared spectra in principle allow one to follow the vibrational population transfer between these two modes. Our simulations of N-methyl acetamide in heavy water predict an efficient relaxation between the two modes with a time scale of 790 fs. This accounts for most of the relaxation of the amide I band in peptides, which has been observed to take place on a time scale of 450 fs in N-methyl acetamide. We therefore conclude that in polypeptides, energy transfer to the amide II mode offers the main relaxation channel for the amide I vibration.  相似文献   

2.
With the importance of mouse as a model to study human diseases and the human and rat plasma/serum two-dimensional (2-D) maps being extensively annotated, this study was aimed at constructing a detailed mouse serum 2-D map. Serum proteins from two different inbred strains of mice (BALB/cJ and C57BL/6J) and mice subjected to two different inflammatory stimuli (20% burn injury and lipopolysaccharide (LPS) injection) were separated on overlapping gels covering pH 3-8 and stained with SYPRO Ruby dye. The tryptic peptides from the resolved spots were analyzed by mass spectrometry, leading to the identification of 38 different gene products. With the exception of major urinary proteins found in abundance in male C57BL/6J mice, little strain difference of the mouse serum 2-D was observed. Many proteins detected in the mouse serum 2-D map were not reported in human or rat serum 2-D maps including epidermal growth factor receptor. Three major murine acute-phase proteins (APPs), haptoglobin, serum amyloid A, and serum amyloid P, were highly induced by both inflammatory stimuli. Image analysis shows that the variations of APPs between these two inflammatory models were not uniform although LPS (100 microg/animal) in general was more effective than 20% burn injury in inducing APPs. Serum amyloid A, much more sensitive to endotoxin than burn injury, may represent a sensitive marker to differentiate these two different inflammatory states.  相似文献   

3.
We have experimentally demonstrated a pulse sequence for the acquisition of heterodyned two-dimensional infrared (2D IR) spectra that correlates the overtone and combination bands to the fundamental frequencies. The spectra are generated by Fourier transforming the time domain signal that is allowed to evolve during one- and two-quantum coherence times. In this manner, the overtone and combination bands appear along the two-quantum axis, resulting in a direct determination of the diagonal and off-diagonal anharmonicities. To demonstrate this pulse sequence, we have collected two-quantum 2D IR spectra of a ruthenium dicarbonyl complex, extracted the diagonal and off-diagonal anharmonicities, and simulated the spectra using an exciton model. Several polarization conditions are presented that suppress the diagonal or cross peaks and we have used them to improve the accuracy of the measurement.  相似文献   

4.
The recently developed efficient method for the calculation of four-wave mixing signals [M. F. Gelin et al., J. Chem. Phys. 123, 164112 (2005)] is employed for the calculation of two-dimensional electronic photon-echo spectra. The effect of the explicit treatment of vibrations coupled to the electronic transitions is systematically analyzed. The impact of pulse durations, optical dephasing, and temperature on the spectra is investigated. The study aims at an understanding of the mechanisms which may give rise to cross peaks in the two-dimensional electronic spectra and at clarifying the conditions of their detection.  相似文献   

5.
6.
We present the results of spectroscopic and photophysical investigations of 4-diethylaminopyridine (DEAP) and its 1 : 1 complexes with a number of protic solvents such as water and various alcohols of different acidity isolated under supersonic jet conditions. While a double resonance vibrational spectroscopic method was employed to investigate the size and geometrical structure of jet-cooled clusters, laser-induced fluorescence spectroscopy was used to examine the changes of photophysics induced by complexation of DEAP with solvent molecule(s). The results obtained from ab initio calculations enable the assignment of geometries and of the vibrational spectra of the clusters in the OH-stretch region. The comparison of the experimental and calculated vibrational spectra indicates that the solvent molecule is hydrogen-bonded to the pyridine nitrogen atom. Dual luminescence is observed only for the complexes with alcohols of relatively strong acidity.  相似文献   

7.
Zhao Z  Cai X  Li P 《Talanta》1987,34(9):813-815
The linear sweep polarographic wave of the uranium-Xylidyl Blue I complex in ethylenediamine-1,10-phenanthroline-hydrochloric acid medium has been studied. The complex, corresponding to UO(2)(XBI)(2-)(2) with log beta' = 9.09 (by polarography), 8.81 (by spectrophotometry), is strongly adsorbed on the surface of the mercury electrode. The polarographic wave is attributed to the reduction of Xylidyl Blue I in the complex. The method is very sensitive with a detection limit of 3 x 10(-8)M. The wave height is proportional to the concentration of uranium over the range 8 x 10(-8)-7 x 10(-6)M. Solvent extraction is used to separate possible interferences. The recommended procedure has been applied to the determination of trace amounts of uranium in ores.  相似文献   

8.
Duong PT  Chang FN 《Electrophoresis》2001,22(10):2098-2102
A "one-step" procedure, that not only removes the color and blocking proteins used in the colorimetric immunodetection step but also stains the proteins originally on the blot, is presented. Following immunostaining and recording of immunoreactive spots, the blot was allowed to air-dry overnight (or longer) at room temperature and then counterstained with a colloidal gold solution. This "air-drying" process apparently altered the affinity of the blocking proteins (and possibly other proteins added subsequently to the blotting step) towards the nitrocellulose membrane causing them to be removed by the acidic colloidal gold solution while the "blotted" proteins were being stained. The sensitivity of this counterstained blot was comparable to that of the blot without going through the immunodetection process. Since both immunodetection and protein staining were carried out on the same blot, this allowed easy identification of many immunoreactive spots to their corresponding proteins when the two profiles were superimposed. Using this procedure, we have detected 25 immunoreactive spots (or allergens) from the whole body extract of the German cockroach (Blattella germanica) that contribute to asthma and assigned them to their corresponding proteins on a two-dimensional (2-D) protein map. The apparent Mr and pI for each of the allergens were determined. We have also located one of the major cockroach allergens, Bla g 5 (glutathione S-transferase). Two-dimensional zymography revealed the presence of ten gelatinase-type proteolytic enzymes. Only one of the ten proteases comigrated with the immunoreactive proteins indicating that unlike other allergen-producing systems, most of the cockroach allergens do not possess protease activity.  相似文献   

9.
10.
The classical simplex method is extended into the Semiglobal Simplex (SGS) algorithm. Although SGS does not guarantee finding the global minimum, it affords a much more thorough exploration of the local minima than any traditional minimization method. The basic idea of SGS is to perform a local minimization in each step of the simplex algorithm, and thus, similarly to the Convex Global Underestimator (CGU) method, the search is carried out on a surface spanned by local minima. The SGS and CGU methods are compared by minimizing a set of test functions of increasing complexity, each with a known global minimum and many local minima. Although CGU delivers substantially better success rates in simple problems, the two methods become comparable as the complexity of the problems increases. Because SGS is generally faster than CGU, it is the method of choice for solving optimization problems in which function evaluation is computationally inexpensive and the search region is large. The extreme simplicity of the method is also a factor. The SGS method is applied here to the problem of finding the most preferred (i.e., minimum free energy) solvation sites on a streptavidin monomer. It is shown that the SGS method locates the same lowest free energy positions as an exhaustive multistart Simplex search of the protein surface, with less than one-tenth the number of minizations. The combination of the two methods, i.e.. multistart simplex and SGS, provides a reliable procedure for predicting all potential solvation sites of a protein.  相似文献   

11.
A self-assembled cylindrical capsule provides a nanoscale environment that affects keto-enol equilibria. The equilibrium constants for encapsulated beta-ketoesters show values that differ by an order of magnitude from that of the free tautomers in solution. For complexes with a single, large encapsulated guest, the inner surfaces of the capsule and the seam of the hydrogen bonds influence the equilibrium between the encapsulated keto and enol forms. For complexes of smaller beta-ketoesters, the coencapsulated solvent influences the equilibria. The solvent reduces the space available and affects the positioning of the ester in the capsule.  相似文献   

12.
Solvolysis/dehydrohalogenation rates of 2-chloro-2-methyladamantane (CMA) in 15 hydrogen-bond acidic and/or basic solvents are studied. The rates of reaction in these solvents have been correlated with the solvation equation developed by Kamlet, Abraham, and Taft. The linear solvation energy relationship (LSER) derived from this study is given by the following equation: log k = -5.409 + 2.219 + 2.505alpha(1) - 1.823beta(1) where , alpha(1), and beta(1) are the solvation parameters that measure the solvent dipolarity/polarizability, hydrogen-bond acidity (electrophilicity), and hydrogen-bond basicity (nucleophilicity). A high correlation coefficient (r = 0.996, SD = 0.191) was achieved. The cavity term, which includes the Hildebrand parameter for solvent cohesive energy density, delta(H), was not found to be statistically significant for this reaction substrate. The resulting equation allows calculated rates of reaction in other solvents and provides insight into the reaction pathway. In a previously reported correlation for another tertiary chloride, tert-butyl chloride (TBC), the coefficients for alpha(1) and are significantly larger and the coefficient for is statistically significant. In addition, the coefficient for beta(1) in the TBC correlation is positive, rather than negative, indicating that the transition states for TBC and CMA are significantly different. These results demonstrate why the uses of simple solvolytic correlation methods may be invalid even for comparisons of similar type substrates, e.g., tertiary chlorides. Also, these results provide confidence in the use of multiple linear regression analysis for predicting solvolytic rates in additional solvents.  相似文献   

13.
Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided.  相似文献   

14.
A simple process was utilized to build a surface barrier detector which was applied to measure activities of uranium isotopes in a thin source prepared by electrolysis.  相似文献   

15.
In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.  相似文献   

16.
17.
We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.  相似文献   

18.
We report the development of an atomic decomposition method of the protein solvation free energy in water, which ascribes global change in the solvation free energy to local changes in protein conformation as well as in hydration structure. So far, empirical decomposition analyses based on simple continuum solvation models have prevailed in the study of protein-protein interactions, protein-ligand interactions, as well as in developing scoring functions for computer-aided drug design. However, the use of continuum solvation model suffers serious drawbacks since it yields the protein free energy landscape which is quite different from that of the explicit solvent model and since it does not properly account for the non-polar hydrophobic effects which play a crucial role in biological processes in water. Herein, we develop an exact and general decomposition method of the solvation free energy that overcomes these hindrances. We then apply this method to elucidate the molecular origin for the solvation free energy change upon the conformational transitions of 42-residue amyloid-beta protein (Aβ42) in water, whose aggregation has been implicated as a primary cause of Alzheimer's disease. We address why Aβ42 protein exhibits a great propensity to aggregate when transferred from organic phase to aqueous phase.  相似文献   

19.
20.
S Suzuki  H Arai 《Radioisotopes》1990,39(4):155-162
In single-photon emission computed tomography (SPECT) and X-ray CT one-dimensional (1-D) convolution method is used for their image reconstruction from projections. The method makes a 1-D convolution filtering on projection data with a 1-D filter in the space domain, and back projects the filtered data for reconstruction. Images can also be reconstructed by first forming the 2-D backprojection images from projections and then convoluting them with a 2-D space-domain filter. This is the reconstruction by the 2-D convolution method, and it has the opposite reconstruction process to the 1-D convolution method. Since the 2-D convolution method is inferior to the 1-D convolution method in speed in reconstruction, it has no practical use. In the actual reconstruction by the 2-D convolution method, convolution is made on a finite plane which is called convolution window. A convolution window of size N X N needs a 2-D discrete filter of the same size. If better reconstructions are achieved with small convolution windows, the reconstruction time for the 2-D convolution method can be reduced. For this purpose, 2-D filters of a simple function form are proposed which can give good reconstructions with small convolution windows. They are here defined on a finite plane, depending on the window size used, although a filter function is usually defined on the infinite plane. They are however set so that they better approximate the property of a 2-D filter function defined on the infinite plane. Filters of size N X N are thus determined. Their value varies with window size. The filters are applied to image reconstructions of SPECT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号