首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CFG桩复合地基沉降影响因素分析   总被引:4,自引:0,他引:4  
对绕2D水翼无分离流边界层内的初生空化形态进行了实验研究. 采用高速摄像机观测 了空化初生结构的形态,应用2D-LDV测量了空化初生时翼型周围的流动速度分布,并对实 验结果进行了分析. 结果表明:绕水翼无分离边界层内,初生空化结构中空泡伴随 着近壁湍流拟序结构的发生而出现,在初生空化条件下,形成空化涡结构,大量的微空泡产生于发夹 涡结构中,并在涡结构的猝发过程中出现生成---长大---溃灭---反弹---再溃灭的过程. 初生空 化涡结构具有空泡和近壁拟序结构双重特性.  相似文献   

2.
The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry(PIV) were used to obtain cavitation patterns images(Prog. Aerosp. Sci. 37: 551–581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α = 8?for moderate Reynolds number of Re = 5.6 × 10~5. The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil(A) and a rough hydrofoil(B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B.Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages:(1) Attached cavities developed along the surface to the trailing edge;(2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages:(1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field;(2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process;(3) Cavities grew and shed again.  相似文献   

3.
非定常空化流场结构的实验研究   总被引:2,自引:0,他引:2  
为深入研究非定常空化流场结构,本文用实验方法研究了绕Clark-Y型水翼的非定常空化流动现象.实验在空化水洞中进行,采用高速摄像技术观测了云状空化阶段的非定常空穴形态,并应用粒子成像测速系统(PIV)对绕水翼空化流场的速度场和涡量场等流动特性进行了同步的实验分析.研究表明:空化现象对流场结构有着重要的影响,在无空化和空...  相似文献   

4.
A method of the numerical investigation of cavitation flow past an arbitrary hydrofoil or a system of hydrofoils and flow past a hydrofoil in a channel or near a free boundary is developed on the basis of the generalized integral Green relation and direct iteration procedure. Emphasis is placed on the numerical analysis of smooth separation of the cavity boundary from a curvilinear surface. The comparison with available analytical and numerical solutions shows a high efficiency of the method proposed.  相似文献   

5.
Time resolved PIV and flow visualization of 3D sheet cavitation   总被引:5,自引:0,他引:5  
Time-resolved PIV was applied to study fully developed sheet cavitation on a hydrofoil with a spanwise varying angle of attack. The hydrofoil was designed to have a three-dimensional cavitation pattern closely related to propeller cavitation, studied for its adverse effects as vibration, noise, and erosion production. For the PIV measurements, fluorescent tracer particles were applied in combination with an optical filter, in order to remove the reflections of the laser lightsheet by the cavitation. An adaptive mask was developed to find the interface between the vapor and liquid phase. The velocity at the interface of the cavity was found to be very close to the velocity predicted by a simple streamline model. For a visualization of the global flow dynamics, the laser beam was expanded and used to illuminate the entire hydrofoil and cavitation structure. The time-resolved recordings reveal the growth of the attached cavity and the cloud shedding. Our investigation proves the viability of accurate PIV measurements around developed sheet cavitation. The presented results will further be made available as a benchmark for the validation of numerical simulations of this complicated flow.  相似文献   

6.
Cavitating flows around a flat plate with semi-circular leading edge and a NACA0015 hydrofoil at attack angles ranging from 0° to 9° and with varying cavitation number are investigated using high-speed-imaging visualization (HIV) and particle-imaging velocimetry (PIV). Several known types of cavitation common to both foils, but also some different patterns, were observed. At small angles of incidence (less than 3°), cavitation on the plate begins in the form of a streak array (bubble-band) whereas on the hydrofoil as traveling bubbles. For the regimes with developed cavitation on the NACA0015 hydrofoil, the scattered and discontinuous bubble streaks branch and grow but subsequently merge into bubble clouds forming a remarkably regular lattice pattern. Once the incidence angle increased to 9°, the cavitation on the hydrofoil changed to a streaky pattern like that on the plate at small attack angles, whereas the regime on the plate showed no significant changes. The PIV method proved to be usable for measuring the instantaneous velocity also in the gas–vapor phase, albeit with reduced accuracy that was evaluated and accounted for on the basis of the effective (validation-surviving) number of imaging samples. The time-averaged velocity and turbulence moments show that the incipience of cavitation is governed by the development of the carrier-fluid flow around the foil leading edges, but the subsequent flow pattern depends strongly on the cavitation regime displaying markedly different distributions compared to the non-cavitating case. The main cavitation parameters: the maximum cavity length, the cloud cavity streamwise dimensions and the cloud shedding Strouhal number are analyzed and presented in function of the cavitation number and the attack angle in different scaling. The measurements confirm qualitatively the trends reported in the literature, but show also some quantitative differences, notably between the two foils considered.  相似文献   

7.
Transformation of flow turbulence structure with cavitation occurrence, determination of the flow conditions favorable for nucleation of cavitation bubbles, influence of the statistical structure of turbulence on this process and the inverse effect of cavitation on the flow dynamics are challenging problems in modern fluid mechanics. The paper reports on the results of statistical processing of the velocity fields measured by a PIV technique in cavitating flow over a 2D symmetric hydrofoil for four flow conditions, starting from a cavitation-free regime and finishing by unsteady cloud cavitation. We analyze basic information on the statistical structure of velocity fluctuations in the form of histograms and Q-Q diagrams along with profiles of the mean velocity and turbulent kinetic energy. The research reveals that the flow turbulence pattern and distributions of turbulent fluctuations change significantly with the cavitation development. Under unsteady cloud cavitation conditions, the probability density function of the fluctuating velocity has a two-mode distribution, which indicates switching of two alternating flow conditions in a region above the hydrofoil aft part due to periodic passing of cavitation clouds. Behaviors of the mean and most probable velocities unexpectedly appear to be different with a monotonous increase of the incoming flow velocity. This finding must be caused by modification of the skewness coefficient of the fluctuating velocity.  相似文献   

8.
Cavitation in hydraulic machines causes different problems that can be related to its unsteady nature. An experimental and numerical study of developed cavitating flow was performed. Until now simulations of cavitating flow were limited to the self developed “in house” CFD codes. The goal of the work was to experimentally evaluate the capabilities of a commercial CFD code (Fluent) for simulation of a developed cavitating flow. Two simple hydrofoils that feature some 3D effects of cavitation were used for the experiments. A relatively new technique where PIV method combined with LIF technique was used to experimentally determine the instantaneous and average velocity and void ratio fields (cavity shapes) around the hydrofoils. Distribution of static pressure on the hydrofoil surface was determined. For the numerical simulation of cavitating flow a bubble dynamics cavitation model was used to describe the generation and evaporation of vapour phase. An unsteady RANS 3D simulation was performed. Comparison between numerical and experimental results shows good correlation. The distribution and size of vapour structures and the velocity fields agree well. The distribution of pressure on the hydrofoil surface is correctly predicted. The numerically predicted shedding frequencies are in fair agreement with the experimental data.  相似文献   

9.
田北晨  李林敏  陈杰  黄彪  曹军伟 《力学学报》2022,54(6):1557-1571
空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.   相似文献   

10.
为理解绕水翼云空化流动的发展机理和探究水翼吸力面开孔射流的影响,采用密度修正的RNG k-ε湍流模型和Schnerr-Sauer空化模型对原始NACA66(mod)水翼和采用射流后的水翼的云空化非定常过程进行模拟和对比分析;采用在水翼吸力面近壁区设立监测线的方法对近壁区的流场进行监测,得到近壁区汽相体积分数、回射流速度、压力及压力梯度的时空分布云图;开展了云空化流场特性的涡动力学分析,进而分析水翼云空化的发生机理和射流抑制空化的抑制机理.结果表明:游离型空泡在下游溃灭时产生强烈的局部高压,其向上游传播导致前缘空穴的一次回缩,而空穴的二次回缩受回射流的影响.回射流的发展区域受限于较高的压力梯度,高的压力梯度一直存在,但回射流在一个周期内的首次出现需要时间的积累.在水翼吸力面射流使得射流孔附近压力升高,弥补了由于空化和绕流造成的压降,压力梯度增大,抗逆压能力增强,对回射流起到阻挡作用;另一方面,射流使得回射流区域面积和回射流的强度也有所减小,从而对云空化的发展起到抑制的效果.Q准则的涡结构云图相比于汽相体积分数云图能显示复杂的流动结构,前缘附着型空穴和尾缘游离型空穴内存在旋涡,回射流对空穴...  相似文献   

11.
王巍  唐滔  卢盛鹏  张庆典  王晓放 《力学学报》2019,51(6):1752-1760
为了改善高速流动工况下水翼吸力面上流场的空化特性,提出了水翼表面主动射流对绕水翼周围流动加以控制的方法.基于密度分域滤波的FBDCM混合湍流模型联合Zwart-Gerber-Belamri空化模型,分析了来流空化数为0.83,来流攻角为8°,射流位置距水翼前缘为x=0.19c时,主动射流对于水翼吸力面上流动的空化特性和水动力特性影响.对回射流的强度进行了量化分析,以探究回射流与流场空化特性的关系.数值分析结果表明,在射流水翼吸力面上的时均空泡体积为原始水翼的1/15,使得流场内空化流动由云空化状态转变为较为稳定的片空化状态,显著地削弱了云空化的发展.此外,射流极大地改善了水翼的水动力性能,使得水翼的升阻比较原始水翼提高了22.9%,空泡的脱落频率减少了26.2%,空泡脱落所引起的振幅减小了9.1%.射流大幅降低了水翼吸力面上低压区面积,水翼吸力面上流体的逆向压力减小,回射流强度降低;同时,射流使水翼吸力面上的边界层减薄,增强了流动的抗逆压梯度能力,一定程度上阻挡了回射流向水翼前缘的流动,这也从机理上分析了主动射流抑制空化的原因.   相似文献   

12.
Tomographic and time resolved PIV measurements were performed to examine the 3D flow topology and the flow dynamic above the upper surface of a low-aspect ratio cylinder at Re ≈ 1 ×  105. This generic experiment is of fundamental interest because it represents flow features which are relevant to many applications such as laminar separation bubbles and turbulent reattachment. At Re  ≈ 1 × 105, laminar separation bubbles arise on the side of the cylinder. Furthermore, on the top of the cylinder a separation with reattachment is of major interest. The tomographic PIV measurement, which allows to determine all three velocity components in a volume instantaneously, was applied to examine the flow topology and interaction between the boundary layer and wake structures on the top of the finite cylinder. In the instantaneous flow fields the tip vortices and the recirculation region becomes visible. However, it is also observed that the flow is quite unsteady due to the large separation occurring on the top of the cylinder. In order to study the temporal behaviour of the separation, time resolved PIV was applied. This technique allows capturing the dynamic processes in detail. The development of vortices in the separated shear layer is observed and in addition regions with different dominant frequencies are identified.  相似文献   

13.
绕水翼超空化流动形态与速度分布   总被引:4,自引:0,他引:4  
为揭示超空化流场结构特性,利用高速全流场显示技术,观察了绕hydronautics水翼的超空化流动形态,并利用数字粒子图像测速仪(DPIV)测量了其速度分布. 在测量空穴内部流速分布时,采用空化流场中的空化泡作为示踪粒子来显示流动结构. 结果表明:随着空化数的降低,超空化流动显现出了明显的阶段特征,其中水汽混合相和汽相的分布决定了空化区域的形态与流速分布;空化区和主流区的汽液交界面处存在着较大的速度梯度;低速分布区域随着空化数的降低由水翼吸力面中后部向水翼下游移动;在空化区域内部,水汽混合区的速度相对较低,而汽相区则与主流区有着相近的速度分布.关键词超空化水翼、DPIV、高速摄像、空化形态、流速分布   相似文献   

14.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   

15.
Results of experiments with a turbulent flow around a transversely aligned circular cylinder located at identical distances from the walls of a rectangular channel are reported. Data on averaged velocity fields around the cylinder are obtained by means of particle image velocimetry (PIV). Based on these fields, the near wake behind the cylinder is studied, and the kinematic characteristics for flow regimes with and without cavitation are compared. Based on the vector fields of averaged velocity, the angles of separation of the boundary layer from the cylinder surface in the considered flow regimes are determined. The drag coefficients of the cylinder for different flow regimes are calculated. It is demonstrated that the vortex region behind the cylinder and the drag coefficient of the cylinder increase in the case with cavitation. It is also shown that vortex shedding from the cylinder may be irregular, despite the fact that this process is quasi-periodic for most of the time.  相似文献   

16.
空泡流非稳态现象的流动控制   总被引:3,自引:0,他引:3  
顾巍  何友声 《力学学报》2001,33(1):19-27
处于跨临界阶段的空泡流必然导致强烈的周期性冲击和振动,空泡流的激振来源于空泡云的周期性大规模脱落,空泡云的形成和发展与流动的边界层效应有着强烈的相关性,且空泡末端的局部流动直接影响空泡流的整体稳定性,本试验在NACA16012水翼表面粘附一条展向1mm厚10mm宽的挡流条,尝试以干扰水翼上表面局部流动的方法来影响整个空泡流的形态及其流动稳定性,最终在一定的空泡数范围内抑制了空泡流激振现象,并从试验研究的角度探索了空泡云脱落的机理。  相似文献   

17.
The influence of leading edge sheet cavitation and supercavitation on the added mass effects experienced by a 2-D NACA0009 truncated hydrofoil has been experimentally investigated in a hydrodynamic tunnel. A non-intrusive excitation and measuring system based on piezoelectric patches mounted on the hydrofoil surface was used to determine the natural frequencies of the fluid–structure system. The appropriate hydrodynamic conditions were selected to generate a range of stable partial cavities of various sizes and also to minimize the effects of other sources of flow noise and vibrations. The main tests were performed for different sigma values under a constant flow velocity of 14 m/s and for incident angles of both 1° and 2°. Additionally, a series of experiments in which the hydrofoil was submerged in air, partially and completely submerged in still water and without cavitation at 7 and 14 m/s were also performed. The maximum added mass effect occurs with still water. When cavitation appears, the added mass decreases because the cavity length is increased, and the added mass is minimum for supercavitation. A linear correlation is found between the added mass coefficients and the entrained mass that accounts for the mean density of the cavity, its dimensions and its location relative to the specific mode shape deformation.  相似文献   

18.
An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. The ultrasonic forcing system was constructed by adhering six ultrasonic transducers to a flat plate over which water was flowed. In this system, the ultrasonic waves projected into the water by the transducers caused cavitation, giving rise to an enormous number of tiny water-vapor bubbles. Stereoscopic particle image velocimetry (SPIV) was used to probe the flow characteristics. The SPIV results showed that imposition of the ultrasonic forcing caused a substantial increase in the mean wall-normal velocity but a decrease in the mean streamwise velocity. The ultrasonic forcing reduced the skin friction coefficient by up to 60% immediately downstream of the transducers; this effect gradually dissipated with moving downstream. The streamwise turbulence intensity was reduced near the wall but increased away from the wall, whereas the wall-normal turbulence intensity was not much affected near the wall but increased away from the wall. The Reynolds shear stress and the production of turbulent kinetic energy were reduced near the wall. Imposition of the ultrasonic forcing shifted the streamwise vortical structures away from the wall, leading to a reduction in skin friction.  相似文献   

19.
The objective of this work is to simulate and analyze the formations of three-dimensional tip leakage vortex (TLV) cavitation cloud and the periodic collapse of TLV-induced suction-side-perpendicular cavitating vortice (SSPCV). Firstly, the improved SST kω turbulence model and the homogeneous cavitation model were validated by comparing the simulation result with the experiment of unsteady cavitation shedding flow around the NACA66-mod hydrofoil, and then the unsteady TLV cloud cavitation and unstable SSPCV in an axial flow pump were predicted using the improved numerical method. The predicted three-dimensional cavitation structures of TLV and SSPCV as well as the collapsing features show a good qualitative agreement with the high speed photography results. Numerical results show that the TLV cavitation cloud in the axial flow pump mainly includes tip clearance cavitation, shear layer cavitation, and TLV cavitation. The unsteady TLV cavitation cloud occurs near the blade trailing edge (TE) where the shapes of sheet cavitation and TLV cavitation fluctuate. The inception of SSPCV is attributed to the tail of the shedding cavitation cloud originally attached on the suction side (SS) surface of blade, and the entrainment affect of the TLV and the influence of the tip leakage flow at the tailing edge contribute to the orientation and development of the SSPCV. The existence of SSPCV was evidently approved to be a universal phenomenon in axial flow pumps. At the part-load flow rate condition, the SSPCV may trigger cavitation instability and suppress the tip cavitation in the neighboring blade. The cavitation cloud on the SS surface of the neighboring blade grows massively, accompanying with a new SSPCV in the neighboring flow passage, and this SSPCV collapses in a relatively short time.  相似文献   

20.
An efficient reduced-order modeling to analyze three-dimensional unsteady partial cavity flows is proposed. The proposed approach is based on the boundary element method along with the potential flow assumption. To this end, a novel non-iterative method based on the flow eigenmodes of three-dimensional partial cavity flows is applied. Eigenanalysis and reduced-order modeling for unsteady flows over a three-dimensional hydrofoil with various sections are performed. The results obtained from the present analysis are compared with those reported in the literature to verify the strength of the proposed approach. In order to examine the performance of the introduced algorithm for unsteady cavitating flows, various simulations for several reduced frequencies, hydrofoil geometries and different cavitation numbers are also investigated. Comparison between the obtained results using the novel and conventional methods indicates that the present algorithm works very well with sufficient accuracy. Moreover, it is shown that the proposed method is computationally more efficient than the conventional ones for unsteady sheet cavitation analysis on three-dimensional hydrofoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号