首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary By small angle neutron scattering from steels valuable quantitative parameters of the microstructure can be obtained in a non-destructive way. Various features of this method are discussed. Microstructural results are presented which were obtained from neutron scattering experiments with neutron-irradiated pressure vessel steel, with a creep-tested super alloy and transformer sheets.
Zusammenfassung Wertvolle quantitative Parameter der Mikrostruktur können durch Neutronen-Kleinwinkelstreuung an Stählen gewonnen werden. Die Methode ist dabei zerstörungsfrei. Weitere Charakteristika werden erläutert. Beispielhaft werden Ergebnisse zur Mikrostruktur vorgestellt, die aus Neutronen-Streuexperimenten mit neutronen-bestrahltem Druckwasserstahl, mit Superlegierungen aus Zeitstandversuchen und mit Transformator-Blechen erhalten wurden.
  相似文献   

2.
Small angle neutron scattering is a powerful, non-destructive technique that can provide both structural and compositional information. Recently, it has been applied to the field of battery research and has helped elucidate some of the phenomena that are traditionally difficult to probe, including lithiation mechanisms, solid electrolyte interface formation/composition, and electrode microstructure. Specific components of interest can be selectively probed through the application of targeted experiments, contrast variation, and specific composition/structural models gained from complementary data from other analytical techniques.  相似文献   

3.
Small angle neutron scattering measurements have been carried out on the tetramethylammonium salt of the polystyrenesulfonic acid withDP w =310 and 1060 in water solution with tetramethylammonium chloride with ionic strength between 0.02 M and 1.0 M. The scattering curves in the scattering vector range 0.05 nm–1Q1.8nm–1 have been fitted using the form factor of a worm-like chain of finite thickness. The conformational parameters mean square radius of gyration, statistic chain element, mass per unit length and mean square radius of the cross-section have been determined experimentally and used for describing the conformation of the coils. By these molecular weights and ionic strengths, excluded volume is not necessary to explain the conformation changes depending on the salt content of the solutions; relatively short coil molecules can be described in their unperturbed dimensions even in a thermodynamically good solvent: a change in the stiffness of the chain according to Odijk's theory succeeds in describing the conformation of the polyions. Together with a slow decrease of the coil dimension by increasing salt content, a transition at ionic strength 0.1–0.5 M between two different conformations has been observed. The conformation at lower ionic strength is characterized by higher stiffness of the chain and lower mass per unit length than the form at higher salt concentration.  相似文献   

4.
Precise vapor pressure data for solutions of Et4NBr, Bu4NBr, Bu4Nl, Bu4NClO4, and Am4NBr in methanol at 25°C in the concentration range 0.04–1]<1.6 are communicated and discussed. Polynomials in molalities are given which may be used for calculating precise vapor pressure depressions of these solutions. Osmotic coefficients are calculated by taking into account the second virial coefficient of methanol vapor. Discussion of the data at low concentrations is based on the chemical model of electrolyte solutions taking into account non-coulombic interactions; ion-pair association constants are compared to those of conductance measurements. Pitzer equations are used to reproduce osmotic and activity coefficients at high concentrations; the set of Pitzer parameters b=3.2, 1 = 2.0, and 2 = 20.0 is proposed for methanol solutions.  相似文献   

5.
Bottlebrush polymers have densely tethered side chains grafted to a linear polymer backbone, resulting in stretching of both the side chains and backbone. Prior studies have reported that the side chains are only weakly stretched while the backbone is highly elongated. Here, scaling laws for the bottlebrush backbone and side chains are determined through small‐angle neutron scattering analysis of a systematic series of poly(lactic acid) bottlebrush polymers synthesized via a “grafting‐through” ring‐opening polymerization. Scattering profiles are modeled with the empirical Guinier–Porod, rigid cylinder, and flexible cylinder models. Side chains are found to be only weakly stretched, with an end‐to‐end distance proportional to N0.55, while the overall bottlebrush increases in size proportional to N0.77. These results demonstrate that the bottlebrush backbone is not fully extended and that both side chains and backbone have significant conformational flexibility in solution. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 104–111  相似文献   

6.
We have studied salt free semi dilute polyelectrolyte solutions by small angle neutron scattering. Specific labelling associated with an extrapolation method has allowed the separation of the form factor of a single polyelectrolyte chainS 1(q) and the structure factorS 2(q). Two lengths are deduced from these two factors: the persistence lengthb t which characterizes the electrostatic interactions along the chain by a fitting ofS 1(q) with calculation of the scattering function for a wormlike chain, and fromS 2(q),q m –1 which characterizes the interactions between chains. These two lengths vary in the same way with the concentration of polyions (b t C p –1/2 ,q m –1 C p –1/2 ) and a constant relation exists between them: only one length is then necessary to describe the structure of polyelectrolyte soltuion on this semidilute concentration range.Laboratoire Commun CEA-CNRS.  相似文献   

7.
The structure of Nafion‐117 perfluorosulfonate ionomer membranes was investigated with small‐angle neutron scattering techniques. Structural changes induced by the swelling of the membranes with water, alcohols, and dipolar, aprotic solvents were monitored at solvent‐swelling levels ranging from approximately 2 vol % to greater than 50 vol %. Membranes swollen up to approximately 50 vol % solvent exhibited two scattering maxima, one known to be associated with ionic regions of the membrane structure and one known to be associated with correlation distances between crystalline regions in the membrane structure. The positions of both maxima shifted toward lower scattering vector values as the solvent content in the membrane increased. The shift in the position of both maxima was linearly related to the solvent volume fraction in the membrane. The Bragg spacings corresponding to both the ionic‐feature scattering maximum and the crystalline‐feature scattering maximum were plotted versus the solvent volume fraction in the membranes, and the data fit with linear regression. The slopes associated with the curves of the spacing versus the solvent volume fraction were greater for the crystalline‐feature spacing than for the ionic‐feature spacing for all solvents other than water; this was indicative of preferential segregation of nonaqueous solvents into regions of the structure not directly associated with the ionic scattering maximum. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 387–400, 2002; DOI 10.1002/polb.10092  相似文献   

8.
Small-angle neutron scattering (SANS) and turbidity measurements have been carried out on the nonionic surfactants Tween 20 and Tween 80, in the presence of diethyleneglycol (DEG), triethyleneglycol (TEG), ethylene glycol monoethyl ether (EGMEE), and ethyleneglycol mono butyl ether (EGMBE). SANS measurements show that the shapes of the Tween 20 and Tween 80 micelles are oblate ellipsoidal, which do not change predominantly in the presence of DEG and TEG. However, the presence of EGMBE and EGMEE reduces the aggregation number of Tween. This has been attributed to the solubilization of EGMBE and EGMEE in the Tween micelles, providing them with additional hydrophobicity.  相似文献   

9.
Summary A general method for the calculation of the small angle scattering pattern of partially oriented polymers with rotational symmetry about the fiber axis is explained. The method can be used with widely varying models for the basic scattering unit.
Zusammenfassung Es wird eine allgemeine Methode zur Berechnung des Kleinwinkelstreudiagramms von partiell orientierten Polymeren mit Rotationssymmetrie bezüglich der Faserachse angegeben. Als Modell für die streuende Grundeinheit können die verschiedensten Strukturen verwendet werden.
  相似文献   

10.
Small angle neutron scattering has been used to examine calcium carbonate dispersions in toluene over the w/w concentration range 5 to 40 %. The particles were stabilised by a combination of a surface active agent and a linear polymeric molecule. Analysis of the experimental data gave results for the structure factorS(Q) and the pair correlation functiong(r).Theoretical computations of the structure factor were made using a hard sphere model and the mean spherical approximation approach. These analyses indicated that the interaction was essentially soft at low volume fractions but became hard at the higher volume fractions.  相似文献   

11.
Casein is the main protein component of milk and is of remarkable colloidal stability. Under the influence of milk clotting enzymes casein shows the striking behaviour of coagulation. This clotting process has already been studied by other groups, neglecting the fact that casein is not a homogeneous protein. The purpose of the present study is focused, in this first stage, on the determination of the structure of the various casein components. In cooperation with other laboratories we have been able to obtain the well separated individual proteins. Studies have been performed so far with- and-casein. For detailed structural information we carried out small angle neutron scattering and combined static and dynamic light scattering measurements and determined the molecular weight,M w, the radius of gyration, S 2 the hydrodynamic radius,R H, the-value and the particle scattering factor, Pz(q). The two caseins show a strikingly different behaviour. For the-casein we found a star-like structure, i. e. an aggregation pattern that is expected for a common micelle. The micelle consists of about 38 monomer chains. The aggregates of-casein appear to be composed of star-like submicelles, where each submicelle contains nine-casein chains and the total degree of aggregation is about 140.  相似文献   

12.
Absolute small angle X-ray studies of concentration fluctuations were performed in order to determine thermodynamic properties of a model blend, consisting ofn-hexane and perfluoro-n-hexane. The quantities which we determined were the second derivate of the Gibbs free energy of mixing with respect to the concentration of the components, the location of the spinodal, interaction and solubility parameters, the energy gradient density coefficient as well as the correlation length of the fluctuations at various compositions and temperatures, particularly in the neighbourhood of the spinodal and the critical point. The data obtained were compared with those obtainable from the well known location of the binodal, to test the reliability of the scattering method.  相似文献   

13.
14.
This article highlights contributions and the tremendous potential of high pressure (HP) small-angle neutron scattering for our understanding of biopolymer stability and phase behavior, in the context of nutrition and food properties. The use of HP processing as a nonthermal sterilization technique is well established in the food industry, and many other applications are emerging in recent years. Green chemistry, consumer preferences, and nutritional trends push for further developments, which require a database of experimental data. Unbiased studies on pressure-induced effects on colloids and amphiphiles are paramount for the development of new food molecules and methodologies. Biopolymer phase diagrams are described, with an emphasis on proteins. HP small-angle neutron scattering research capabilities and future directions are discussed.  相似文献   

15.
This paper reviews small‐angle neutron scattering (SANS) and some results from direct nonradiative energy transfer (DET), for the observation of the diffusion coefficients of polystyrene chains at latex interfaces. To compare SANS with DET, doubly labeled polystyrene with deuterium and fluorescence groups were synthesized, showing that while SANS and DET produce comparable data in terms of diffusion coefficients, both results differ in detail, each having their own advantages. Chain confinement, ionic end groups, and short branch effects on interdiffusion were studied. Large polymer chains confined in small particles have non‐Gaussian shapes that store rubber elastic energy. Rapid, non‐diffusion relaxation is inhibited because the density would be required to become less than normal. Hence confinement effects on the diffusion rate are not significant. Using the DET method, ionic end‐groups were found to increase the early‐time apparent interdiffusion coefficients during film formation. The early‐time apparent diffusion coefficients of polystyrene with varying end‐groups were found to increase as follows: The higher apparent diffusion coefficients of the chains with ionic groups are presumably due to a surface segregation of the end‐groups caused by the polar, aqueous environment during latex synthesis. The interdiffusion behavior of sulfite‐ended polystyrene (Mn ? 300 000 g/mol) with H‐ends, one sulfite end, and two sulfite ends were compared via SANS and DET. The diffusion coefficients of polystyrene with one or two sulfite end groups were five times and ten times lower than that of polystyrene, respectively. The ionic end group effects on the reduced diffusion coefficients are interpreted as the competition between enhancement by the surface segregation of end groups and reduction by end group aggregation. Noting that sulfate end groups diffused faster, while sulfite end groups diffused slower, the effect is complex, and not yet fully resolved. Diffusion coefficients of polystyrene with branches were studied by DET. Short branches work to decrease the Tg and hence increase the diffusion coefficients. However, after the experimental temperature, T, is converted to a normalized temperature, T‐Tg, the diffusion coefficients are found to be almost independent upon the number of branches and the length of branches. The branch length ranged from one‐carbon to 40 carbons. Side chains of entanglement molecular weight or longer may be required to significantly reduce the diffusion coefficient. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The conformational characteristics of a comb‐like side‐chain liquid crystal polysiloxane (SCLCP), dissolved in deuterated chloroform, were evaluated by small‐angle neutron scattering (SANS) measurements over a wide q range. SANS studies were carried out on specimens with constant backbone length (DP = 198) and variable spacer length (n = 3, 5, and 11), and with constant spacer length (n = 5) and variable DP (45, 72, 127, and 198). The form factor P(q) at high q was analyzed using the wormlike chain model with finite cross‐sectional thickness (Rc) and taking into account the molecular weight polydispersity. The analysis generated values of persistence length in the range lp = 28–32 Å, considerably larger than that of the unsubstituted polysiloxane chain (lp = 5.8 Å), with contour lengths per monomer comparable to the fully‐extended polysiloxane backbone (lm = 2.9 Å). This indicates a relatively rigid SCLCP chain due to the influence of the densely attached mesogenic groups. The SCLCP with n = 11 is more flexible (lp = 28 Å) than those with n = 3 and n = 5 (lp = 32 Å). The cross‐sectional thickness increases with spacer length, Rcn0.21±0.02 (3 ≤ n ≤ 11), and the contour length per monomer decreases with increasing spacer length, lmn?0.35±0.01. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2412–2424, 2006  相似文献   

17.
Viscosity and desity data for KCl, KBr, Me4NBr, Et4NBr, Pr4NBr, and Bu4NBr from 0.005 to 3M in aqueous dimethylformamide solutions at 25°C and 35°C are presented. The data for dilute solutions were analyzed by means of the Jones-Dole equation and the ionic B coefficients evaluated. The data for concentrated solutions were analyzed by the Breslau and Miller equation and the effective flow volume, V3 of the electrolytes obtained as a function of concentration. The limiting effective flow volume, V e o was obtained from the Vand equation in the form used by Eagland and Pilling and it is shown that B=2.5 V e o . With increasing DMF concentration V e o increases for Me4NBr but decreases for Pr4NBr and Bu4NBr. The same effect was observed by increasing temperature. This behavior is explained in terms of the structuring effect of the constituent ions and the effect of DMF on the overall structure of the binary solvent.  相似文献   

18.
We examine the crystallization and chain conformation behavior of semicrystalline poly(ethylene oxide) (PEO) and amorphous poly(vinyl acetate) (PVAc) mixtures with wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS), and small‐angle neutron scattering (SANS) experiments. For blends with PEO weight fractions (wtPEO) greater than or equal to 0.3, below the melting point of PEO, the WAXD patterns reveal that crystalline PEO belongs to the monoclinic system. The unit‐cell parameters are independent of wtPEO. However, the bulk crystallinity determined from WAXD decreases as wtPEO decreases. The scattered intensities from SAXS experiments show that the systems form an ordered crystalline/amorphous lamellar structure. In a combination of WAXD and SAXS analysis, the related morphological parameters are assigned correctly. With the addition of amorphous PVAc, both the average amorphous layer thickness and long spacing increase, whereas the average crystalline layer thickness decreases. We find that a two‐phase analysis of the correlation function from SAXS, in which the scattering invariant is linearly proportional to the volume fraction of lamellar stacks, describes quantitatively the crystallization behavior of PEO in the presence of PVAc. When wtPEO is close to 1, the samples are fully spaced‐filled with lamellar stacks. As wtPEO decreases from 1.0 to 0.3, more PVAc chains are excluded from the interlamellar region into the interfibrillar region. The fraction outside the lamellar stacks, which is completely occupied with PVAc chains, increases from 0 to 58%. Because the radius of gyration of PVAc with a random‐coil configuration determined from SANS is smaller than the average amorphous layer thickness from SAXS, we believe that the amorphous PVAc chains still persist with a random‐coil configuration even when the blends form an ordered structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2705–2715, 2001  相似文献   

19.
Small angle neutron scattering studies have been made on solutions of dodecylhexaoxyethylene glycol in D2O above the critical micelle concentration and as a function of temperature. It was possible to fit the experimental data at low values of scattering vector using a cylindrical model for the micelle shape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号