首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.  相似文献   

2.
超导纳米线单光子探测(SNSPD)器件具有较低的时间抖动特性,可以实现低误码率的QKD和高精度的激光测距。文中对超导纳米线单光子探测系统的时间抖动进行了详细的分析和测量,分析了SNSPD系统各部分对系统抖动的贡献。使用时间相关的单光子计数技术(TCSPC)和示波器的抖动分析软件,分别测量了SNSPD系统的时间抖动,比较了两种方法的优劣。在两种测量方法下,系统总的时间抖动分别约为42ps和31ps,计算后得到单光子探测器件的抖动约为25ps。发现放大器的性能对系统时间抖动影响明显。通过使用不同放大器比较分析了测量得到的时间抖动。  相似文献   

3.
We demonstrate laser-ranging results for non-cooperative targets at ranges of 237 m and 19 km using superconducting nanowire single-photon detectors(SSPD). We upgrade the kilohertz rate laser-ranging system with a newly developed SSPD module, and the equivalent detection diameter is enlarged to 50 μm with a fiber and micro-lenses. Both retroreflectors and non-cooperative surfaces of aluminum foil, a solar panel, and a concrete panel at distances of 237 m and 19 km, whose echoes are of single-photon level, are ranged with sub-centimeter precision. Experimental signal-to-noise ratio curves with the product of quantum efficiency and system transmittance are obtained, which indicates that our system, with an average laser power of 0.8 W and a receiving aperture of 1.2 m, may be capable for space debris ranging at a distance of 800 km. This work suggests that SSPDs have the potential to be used for space debris surveillance.  相似文献   

4.
Niobium nitride superconducting nanowire single-photon detectors were fabricated on thermally oxidized silicon substrates with large active areas of 30 μm× 30 μm.To achieve non-constricted detectors,we improved the film growth and electron beam lithography process to fabricate uniform 100-nm wide Nb N nanowires with a fill factor of 50%.The devices showed 72.4% system detection efficiency(SDE) at 100-Hz dark count rate(DCR) and 74-ps timing jitter,measured at the fiber communication wavelength of 1550 nm.The highest SDE which is 81.2% when the DCR is ~ 700 c/s appears at the wavelength of 1650 nm.  相似文献   

5.
超导单光子探测技术是基于超薄超导薄膜的非平衡态热电子效应的一种新型的单光子探测方法。超导单光子探测器(SNSPD)的计数率可达到GHz,时间抖动小于100ps,因而在未来量子通信系统中有着广阔的应用前景。介绍了NbN超导单光子探测器件的工作原理和器件超导性能测试系统;测试了超导单光子探测器件的电阻-温度、电流-电压等特性。并对测试结果进行了分析和讨论。  相似文献   

6.
超导纳米线单光子探测器   总被引:4,自引:0,他引:4       下载免费PDF全文
利用磁控溅射、电子束光刻和反应离子刻蚀等微加工技术,开展了超导纳米线单光子探测器(SNSPD)的研究.通过对SNSPD的设计和制备工艺参数的优化,成功制备出了高质量的SNSPD.单光子检测实验表明,制备的SNSPD对660 nm波长的光信号,系统检测效率可达30%,对1550 nm波长光信号,最大系统检测效率为4.2%.在平均暗计数小于10 c/s的情况下,系统检测效率大于20%(660 nm)和3%(1550 nm). 关键词: 单光子 氮化铌 纳米线 探测器  相似文献   

7.
单光子探测是一种量子极限光信号的检测技术,超导纳米线单光子探测器(Superconducting NanowireSingle-Photon Detector,SNSPD)作为一种新型的单光子探测技术,在量子通信等众多领域有着广阔的应用前景。SNSPD的动态电感直接决定了SNSPD的工作速度。文中对SNSPD动态电感的特性和测试方法做了详细的研究,成功实现了低温下SNSPD动态电感的测试,并对结果进行了分析处理和研究。利用BCS理论对动态电感随温度、偏置电流变化的特性进行分析计算,并与实际测量结果对比讨论,为未来如何降低SNSPD动态电感、提高其性能的研究工作提供了参考依据。  相似文献   

8.
High detection efficiency and low intrinsic dark count rate are two advantages of superconducting nanowire single photon detectors(SNSPDs).However,the stray photons penetrated into the fiber would cause the extrinsic dark count rate,owing to the free running mode of SNSPDs.In order to improve the performance of SNSPDs in realistic scenarios,stray photons should be investigated and suppression methods should be adopted.In this study,we demonstrate the pulsegated mode,with 500 kHz gating frequency,of a commercial SNSPD system for suppressing the response of stray photons about three orders of magnitude than its free-running counterpart on the extreme test conditions.When we push the gating frequency to 8 MHz,the dark count rate still keeps under 4% of free-running mode.In experiments,the intrinsic dark count rate is also suppressed to 4.56 × 10~(-2) counts per second with system detection efficiency of 76.4372%.Furthermore,the time-correlated single-photon counting analysis also approves the validity of our mode in suppressing the responses of stray photons.  相似文献   

9.
正In 2007,superconducting nanowire single photon detectors(SSPD or SNSPD)[1]made an outstanding impact in the field of quantum information technology by demonstrating quantum key distribution(QKD)over a 200-km optical fiber with a 42-dB optical loss using a practical SNSPD system[2].This successful demonstration was realized thanks to its extremely  相似文献   

10.
Superconducting nanowire single-photon detectors(SNSPDs) have attracted considerable attention owing to their excellent detection performance; however, the underlying physics of the detection process is still unclear.In this study, we investigate the wavelength dependence of the intrinsic detection efficiency(IDE) for NbN SNSPDs.We fabricate various NbN SNSPDs with linewidths ranging from 30 nm to 140 nm.Then, for each detector, the IDE curves as a function of bias current for different incident photon wavelengths of 510–1700 nm are obtained.From the IDE curves, the relations between photon energy and bias current at a certain IDE are extracted.The results exhibit clear nonlinear energy–current relations for the NbN detectors, indicating that a detection model only considering quasiparticle diffusion is unsuitable for the meander-type NbN-based SNSPDs.Our work provides additional experimental data on SNSPD detection mechanism and may serve as an interesting reference for further investigation.  相似文献   

11.
The performance of superconducting nanowire single-photon detector (SNSPD) involving niobium nitride with the fan coupling antenna array is analyzed. The SNSPD has a high detection efficiency and counting rate. Hydrogen silsesquioxane and niobium nitride are filled in the gold grating deposited on the substrate in which the fan coupling antenna arrays are embedded. By changing the position of the fan coupling antenna array, the maximum area of optical intensity is obtained and the photon collection efficiency is increased by 26.5 times. The detection efficiency of SNSPD is improved without changing the detection speed. These parameters are important for designing a practical single-photon detector,  相似文献   

12.
A new method to study the transient detection efficiency(DE) and pulse amplitude of superconducting nanowire single photon detectors(SNSPD) during the current recovery process is proposed — statistically analyzing the single photon response under photon illumination with a high repetition rate.The transient DE results match well with the DEs deduced from the static current dependence of DE combined with the waveform of a single-photon detection event.This proves that static measurement results can be used to analyze the transient current recovery process after a detection event.The results are relevant for understanding the current recovery process of SNSPDs after a detection event and for determining the counting rate of SNSPDs.  相似文献   

13.
We demonstrate a photon-counting chirped amplitude modulation(CAM) light detection and ranging(lidar) system incorporating a superconducting nanowire single-photon detector(SNSPD) and operated at a wavelength of 1550 nm.The distance accuracy of the lidar system was determined by the CAM bandwidth and signal-to-noise ratio(SNR) of an intermediate frequency(IF) signal. Owing to a short dead time(10 ns) and negligible dark count rate(70 Hz) of the SNSPD, the obtained IF signal attained an SNR of 42 d B and the direct distance accuracy was improved to 3 mm when the modulation bandwidth of the CAM signal was 240 MHz and the modulation period was 1 ms.  相似文献   

14.
Hou-Rong Zhou 《中国物理 B》2022,31(5):57401-057401
Superconducting nanowire single-photon detectors (SNSPDs) are typical switching devices capable of detecting single photons with almost 100% detection efficiency. However, they cannot determine the exact number of incident photons during a detection event. Multi-pixel SNSPDs employing multiple read-out channels can provide photon number resolvability (PNR), but they require increased cooling power and costly multi-channel electronic systems. In this work, a single-flux quantum (SFQ) circuit is employed, and PNR based on multi-pixel SNSPDs is successfully demonstrated. A multi-input magnetically coupled DC/SFQ converter (MMD2Q) circuit with a mutual inductance M is used to combine and record signals from a multi-pixel SNSPD device. The designed circuit is capable of discriminating the amplitude of the combined signals in accuracy of Φ0/M with Φ0 being a single magnetic flux quantum. By employing the MMD2Q circuit, the discrimination of up to 40 photons can be simulated. A 4-parallel-input MMD2Q circuit is fabricated, and a PNR of 3 is successfully demonstrated for an SNSPD array with one channel reserved for the functional verification. The results confirm that an MMD2Q circuit is an effective tool for implementing PNR with multi-pixel SNSPDs.  相似文献   

15.
超高灵敏度太赫兹超导探测器   总被引:2,自引:0,他引:2       下载免费PDF全文
史生才  李婧  张文  缪巍 《物理学报》2015,64(22):228501-228501
太赫兹(THz)波段一般定义为0.1–10 THz的频率区间, 对应波长范围3 mm–30 μm, 覆盖短毫米波至亚毫米波段(远红外). 尽管人们早已认识到太赫兹波段具有非常重要的科学意义和广泛的应用前景, 但该波段仍然是一个有待全面研究和开发的电磁频率窗口. 因此, 太赫兹波段的天文观测在天体物理及宇宙学研究中具有不可替代的作用, 对于理解宇宙状态和演化具有非常重要的意义. 具有超高灵敏度的太赫兹超导探测器, 已经成为太赫兹波段观测的主要手段. 本文主要阐述了太赫兹超导探测器的基本类型和工作原理, 以及中国科学院紫金山天文台在该领域的主要研究成果和进展.  相似文献   

16.
T Yamashita  S Miki  H Terai  K Makise  Z Wang 《Optics letters》2012,37(14):2982-2984
We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.  相似文献   

17.
Ho KP  Lau AP  Shieh W 《Optics letters》2011,36(4):585-587
In electronic digital signal processing based optical communication systems, digital equalization for chromatic dispersion interacts with local oscillator phase noise to produce equalization-enhanced phase noise (EEPN). In addition to both phase and intensity noises, EEPN also induces timing jitter to the equalized signal. For a 100?Gbit/s quadrature-phase-shift keying signal with laser linewidth of 300?kHz, the timing jitter is up to 20% of the symbol interval for a transmission distance of 1500?km.  相似文献   

18.
王红培  王广龙  倪海桥  徐应强  牛智川  高凤岐 《物理学报》2013,62(19):194205-194205
针对量子点场效应单光子探测器(QDFET)光吸收效率低下的问题, 提出了一种新型量子点场效应增强型单光子探测器(QDFEE-SPD). QDFEE-SPD增加了共振腔的设计, 并采用了GaAs/AlAs多层膜作为下反射镜; 对QDFEE-SPD的光吸收增强效应和光响应度进行了理论分析和模拟, 结果表明, 与没有共振腔时相比, QDFEE-SPD的吸收效率和光相应度都有了大幅度的提升, 同时为了光吸收的最优化, 吸收层厚度一般应在0.1–0.5 μm; 对QDFEE-SPD的材料样品进行了生长和测试实验, 反射谱测试和PL谱测试结果表明, QDFEE-SPD对入射光的吸收具有了明显的增强效应. 文章成果为高效率量子点场效应单光子探测技术的研究提供了新的思路. 关键词: QDFEE-SPD 共振腔 吸收效率 光吸收增强效应  相似文献   

19.
李齐良  李庆山  林理彬 《中国物理》2006,15(10):2306-2314
In this paper, the timing jitter in dispersion-managed soliton-like systems with the Gaussian pulse is studied by using two methods. Firstly, the derivation of the dynamic equations for the evolution of soliton-like parameters and the timing jitter expressions for the dispersion-managed soliton-like systems are carried out by the perturbed variational method. By analysing and simulating these timing jitter expressions, one can find that the timing jitter is induced by the amplified spontaneous emission noise and the frequency shift, etc. Nonlinear gain can suppress the timing jitter. The chirp sign and the filters action have also effects on the total timing jitter. Secondly, the timing jitter is calculated and analysed by using the moment method. The results of the two methods prove to be consistent with each other.  相似文献   

20.
A coaxial Marx generator triggered with a UV laser pulse propagating coaxially through multigap switches is constructed. The Marx generator is operated at maximum voltage of 200 kV with a rise time of less than 10 ns. To trigger multigap switches in the Marx generator, the laser pulse is passed through fine metal mesh fitted in the holes formed along the central axis in electrodes of gap switches. Photoelectrons generated from the mesh part of the cathode trigger the discharge and close the switches. Timing jitter of the high voltage pulse with respect to the laser pulse is 800 ps for the case of single gap switch and 1 ns for the Marx generator with two stage gap switches. Since the spark path is always formed from the solid surface of the cathode instead of the metal mesh, the mesh part of the cathode is never damaged for a large number of shots, promising long lifetime of the electrodes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号