首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years conducting polymers such as polyaniline are used as corrosion inhibitors for metals in acids. The performance of the inhibitor can be enhanced either by the addition of halide ions or metal cations. A study has been made on the effect of addition of ceric ions on the corrosion inhibition performance of polyaniline for iron in 0.5 M H2SO4. Techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization and linear polarization resistance methods have been employed to study the corrosion inhibition. The polyaniline has been used in the concentration range of 10-100 ppm and the ceric ions concentration has been maintained at 1 × 10−3 M. The inhibition efficiency of polyaniline at 10 ppm has been increased from 53 to 88% and for 50 ppm from 71 to 90% in the presence of ceric ions. The enhanced inhibition of polyaniline in presence of ceric ions is due to the higher coverage of polyaniline-cerium complex.  相似文献   

2.
Two Fe-based alloys with a small variation in the Ni content, Fe-15.2Cr-5.1Ni and Fe-15.7Cr-7.1Ni (wt.%), were fabricated on a martensitic stainless steel 1Cr13 substrate by laser surface cladding (LSC) using a CO2 laser and Ar shielding gas that was blown into a molten pool. Both LSC alloys exhibited typical rapid directional solidification structures. However, 2 wt.% Ni increase led to ∼9% increase in the weight fraction of austenite, and ∼5% increase in the area proportion of interdendritic regions, which contained the higher Cr contents. These microstructural changes caused a great reduction in the microhardness and great improvements in the resistance to electrochemical corrosion in 0.5 M H2SO4 solution and high temperature oxidation in air at 900 °C. The reasons for these differences are discussed in detail.  相似文献   

3.
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H2SO4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10−4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.  相似文献   

4.
In order to study the effect of yttrium ion implantation on the aqueous corrosion behavior of laser beam welded zircaloy-4 (LBWZr4), The butt weld joint of zircaloy-4 was made by means of a carbon dioxide laser, subsequently the LBWZr4 samples were implanted with yttrium ion using a MEVVA source at an energy of 40 keV, with a fluence range from 1 × 1016 to 4 × 1016 ions/cm2 at about 150 °C. Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of yttrium-implanted LBWZr4 in a 0.5 M H2SO4 solution. Scanning electron microscopy (SEM) was used to examine the surface topographic character of the yttrium-implanted LBWZr4 before and after the potentiodynamic polarization measurement. The valences of the carbon, yttrium, and zirconium in the surface layer were analyzed by X-ray photoemission spectroscopy (XPS). It was found that a significant improvement was achieved in the aqueous corrosion resistance of yttrium-implanted LBWZr4 compared with that of the un-implanted LBWZr4. The mechanism of the corrosion resistance improvement of the yttrium-implanted LBWZr4 is probably due to the addition of the yttrium oxide dispersoid into the zirconium matrix.  相似文献   

5.
The electrochemical impedance spectroscopy (EIS) was used to study the characteristics of CO2 corrosion of N80 and 4Cr steels with corrosion scales. The results indicated that CO2 corrosion scale on tube steel could prevent the rate of mass transfer remarkably, corrosion rate was controlled by ions diffusion in corrosion scale, which led to finite length diffusion impedance occurred in electrochemical impedance spectra. Additionally, pitting of N80 steel could lead to additional capacitive reactance in impedance spectrum. The ion diffusion coefficient in corrosion scale and porosity of corrosion scale could be calculated by Warburg impedance coefficient, the results shown that the value of H+ diffusion coefficient in N80 and 4Cr corrosion scale is (3.46 and 1.76) × 10−10 m2 s−1, respectively. The protective ability of 4Cr corrosion scale was better than that of N80 corrosion scale.  相似文献   

6.
Friction stir welding is a promising solid state joining process for high strength aluminum alloys. Though friction stir welding eliminates the problems of fusion welding as it is performed below melting temperature (Tm), it creates severe plastic deformation. Friction stir welds of some aluminum alloys exhibit relatively poor corrosion resistance. This research enhanced the corrosion properties of such welds through diode laser surface melting.A friction stir weld of aluminum alloy 2024 T351 was laser melted using a 1 kW diode laser. The melt-depth and microstructure were investigated using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. At the interface between the melted and the un-melted zone, a thick planar boundary was observed. Energy dispersive spectroscopy analyzed the redistribution of elemental composition. The corrosion properties of the laser melted and native welds were studied in aqueous 0.5 M sodium chloride solution using open circuit potential and cyclic potentiodynamic polarization. The results show noticeable increase in the pit nucleation resistance (390 mV) after the laser surface treatment. The repassivation potential was nobler to the corrosion potential after the laser treatment, which confirmed that the resistance to pit growth was improved.  相似文献   

7.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

8.
This paper describes the use of the electrochemical impedance spectroscopy technique (EIS) in order to study the corrosion inhibition process of steel in 0.5 M H2SO4 solution at the open circuit potential (OCP). Diethyl pyrazine-2,3-dicarboxylate (Prz) as a non-ionic surfactant (NS) inhibitor has been examined. The Nyquist diagrams consisted of a capacitive semicircle at high frequencies followed by a well-defined inductive loop at low frequency values. The impedance measurements were interpreted according to suitable equivalent circuits. The results obtained showed that the Prz is a good inhibitor. The inhibition efficiency increases with an increase in the surfactant concentration to attain 80% at the 5 × 10−3M. Prz is adsorbed on the steel surface according to a Langmuir isotherm adsorption model.  相似文献   

9.
Novel corrosion inhibitors, namely 1-{2-[(2-hydroxyethyl)thio]ethyl}pyrrolidin-2-one (P5) and {[2-(2-oxopyrrolidin-1-yl)ethyl]thio}acetic acid (P4), were synthesised and tested as corrosion inhibitors for steel in 0.5 M H2SO4. The effects of P4 and P5 are also compared to their initial reactants 1-vinylpyrrolidin-2-one (P1), 2-mercaptoethanol (P2) and mercaptoacetic acid (P3). The study was carried out by weight loss measurements, potentiodynamic polarisation, linear polarisation resistance (Rp) and electrochemical impedance spectroscopy (EIS) methods. The inhibition efficiency increases with the concentration of P5 to attain 89% at 5 × 10−3 M. We note good agreement between the various methods explored. Polarisation measurements show also that the pyrrolidones act essentially as cathodic inhibitors. The cathodic curves indicate that the reduction of proton at the steel surface is an activating mechanism. P4 and P5 adsorb on the steel surface according to Langmuir adsorption model. Effect of temperature is also studied in the 298-353 K range. Efficiency is explained by the theoretical studies.  相似文献   

10.
The effect of addition of 1,3-bis(3-hyroxymethyl-5-methyl-1-pyrazole) propane (M = 264 g). HMPP on steel corrosion in 0.5 M sulphuric acid is studied by weight-loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements at various temperatures. The results obtained showed that HMPP acts as a good corrosion inhibitor. The inhibition efficiency increases with the bipyrazole compound to attain 88%. It acts as a mixed-type inhibitor. Trends in the increase of charge-transfer resistance and decrease of capacitance values also show the adsorption of the molecule on the metal surface. The bipyrazole adsorbs on the steel surface according to the Langmuir isotherm adsorption model. Effect of temperature indicates that inhibition efficiency decreases with temperature between 25 and 85 °C.  相似文献   

11.
Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn2+, Mn2+ and Ce4+ ions in the concentration range 1-10 × 10−3 M has been found out. The corrosion behaviour of iron in 0.5 M H2SO4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce4+ ? Mn2+ > Zn2+.  相似文献   

12.
The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H2SO4 markedly.  相似文献   

13.
Electrochemical studies of zinc-nickel codeposition in sulphate bath   总被引:1,自引:0,他引:1  
The electrodeposition of Zn-Ni alloys from a sulphate bath was studied under different conditions. The bath had the composition 0.40 M sodium sulphate, 0.01 M sulphuric acid, 0.16 M boric acid, 0.20 M zinc sulphate and 0.20 M nickel sulphate. It is found that the plating bath temperature has a great effect on the cyclic voltammograms, galvanostatic measurements during electrodeposition, and consequently linear polarization resistance for corrosion study and the alloy composition. Under the examined conditions, the electrodeposition of the alloys was of anomalous type. X-ray diffraction measurements revealed that the alloys consisted of the δ-phase (Ni3Zn22) or a mixture of the two phases δ and γ (Ni5Zn21). The comparison between Ni deposition and Zn-Ni codeposition revealed that the remarkable inhibition of Ni deposition takes place due to the presence of Zn2+ in the plating bath. The Ni deposition starts at −0.85 V in the bath of Ni deposition only, but the deposition starts at more negative potentials in the codeposition bath although the concentration of Ni2+ is the same in the both baths.  相似文献   

14.
In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H3PO4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.  相似文献   

15.
The electrochemical oxidation of CH3OH at nanometer-scale PtRu catalyst materials is reported. Comparisons are made between the properties of a Johnson Matthey (JM) PtRu black sample (50 at.% Ru (XRu ≈ 0.5)) and PtRu particles (2-6 nm, nominally XRu ≈ 0.5) prepared by sonication under anhydrous conditions. Cyclic voltammetry and in situ infrared spectroscopy measurements show the catalysts are active for the oxidation of 0.5 M CH3OH in 0.1 M HClO4 at temperatures between ambient and 70 °C. The sonochemically prepared PtRu sample displayed properties characteristic of bulk PtRu alloys with XRu ≈ 0.5. Evidence for phase separation of Pt and Ru was observed in CO stripping voltammetry from the JM catalyst adsorbed at low metal loadings (20 μg/cm2) on bulk Au electrodes. Per gram of catalyst, the JM material was more active toward CO2 formation and displayed greater resistance to poisoning by adsorbed CO than the sonochemically prepared material during ambient temperature oxidation of 0.5 M CH3OH in 0.1 M HClO4.  相似文献   

16.
Sulfide-stain resistance of La-passivated, unpassivated and Cr-passivated tinplate was measured using a cysteine tarnish test. Corrosion behavior of these tinplates was investigated using electrochemical impedance spectroscopy (EIS) measurement. The morphology, composition and thickness of lanthanum film were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence spectrometry (XRF), respectively. La-passivation treatment remarkably enhances sulfide-stain resistance of tinplate, and sulfide-stain resistance of La-passivated tinplate is slightly higher than that of Cr-passivated tinplate. La-passivation treatment also significantly improves corrosion protection property of tinplate. In contact with 3.5% NaCl solution, corrosion resistance of La-passivated tinplate is close to that of Cr-passivated tinplate, and in contact with 0.1 M citric-citrate buffer solution, corrosion resistance of La-passivated tinplate is higher than that of Cr-passivated tinplate. Lanthanum film is composed of spherical particles about 50-1000 nm in diameter, while most part of tinplate's surface is covered with the small particles about 50-200 nm. The film mainly consists of lanthanum and oxygen, which mainly exist as La2O3 and its hydrates such as La(OH)3 and LaOOH. The amount of lanthanum in the film is about 0.0409 g/m2.  相似文献   

17.
The anodization of ZK60 magnesium alloy in an alkaline electrolyte of 100 g/l NaOH + 20 g/l Na2B4O7·10H2O + 50 g/l C6H5Na3O7·2H2O + 60g/l Na2SiO3·9H2O was studied in this paper. The corrosion resistance of the anodic films was studied by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques and the microstructure and composition of films were examined by SEM and XRD. The influence of anodizing time was studied and the results show that the anodizing time of 60 min is suitable for acquiring films with good corrosion resistance. The influence of current density on the corrosion resistance of anodizing films was also studied and the results show that the film anodized at 20 mA/cm2 has the optimum corrosion resistance. The film formed by anodizing in the alkaline solution with optimized parameters show superior corrosion resistance than that formed by the traditional HAE process. The XRD pattern shows that the components of the anodized film consist of MgO and Mg2SiO4.  相似文献   

18.
Lead is very susceptible to corrosion in the presence of organic acids and humidity. A potential countermeasure is to apply a lead carboxylate coating by immersing the metal in a sodium carboxylate solution/suspension. In this work we report on the degree of surface coverage and the corrosion resistance of a lead decanoate Pb(C10)2 coating as a function of treatment time. Results show that the surface coverage reaches 91% after 15 min and about 100% after 1 h in a 0.05 M sodium decanoate solution. The corrosion resistance, as indicated by electrochemical impedance spectroscopy, continues to increase even after 6 h of immersion. In addition, we show that in the case of planar transport, a diffusion layer of 17 mm thickness exists, wherein the sodium decanoate concentration drops linearly from its bulk value to almost zero at the solid/surface interface.  相似文献   

19.
Al2O3 /TiN double and Al2O3/Cr/TiN triple coatings were produced on stainless steel substrates using plasma-detonation techniques. Investigation of the microstructure and characteristics of the coatings after the preparation was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques (open circuit potential, cyclovoltammetry and potentiodynamic polarization). The obtained results showed, in most of the cases, an improvement of the corrosion resistance, except in NaCl solutions. The effect of the controlled thickness of TiN and Cr layers as well as the additional treatment with a high-current electron beam was also investigated. Nuclear reaction analysis (NRA), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM) were applied for the characterization of the samples before and after the corrosion experiments.  相似文献   

20.
The purpose of this study has been to advance in knowledge of the chemical composition, structure and thickness of the thin native oxide film formed spontaneously in contact with the laboratory atmosphere on the surface of freshly polished commercial AZ31 and AZ61 alloys with a view to furthering the understanding of protection mechanisms. For comparative purposes, and to more fully describe the behaviour of the native oxide film, the external oxide films formed as a result of the manufacturing process (as-received condition) have been characterised. The technique applied in this research to study the thin oxide films (thickness of just a few nanometres) present on the surface of the alloys has basically been XPS (X-ray photoelectron spectroscopy) in combination with ion sputtering. Corrosion properties of the alloys were studied in 0.6 M NaCl by measuring charge transfer resistance values, which are deduced from EIS (electrochemical impedance spectroscopy) measurements after 1 h of exposure. Alloy AZ61 generally showed better corrosion resistance than AZ31, and the freshly polished alloys showed better corrosion resistance than the alloys in as-received condition. This is attributed to a combination of (1) higher thickness of the native oxide film on the AZ61 alloy and (2) greater uniformity of the oxide film in the polished condition. The formation of an additional oxide layer composed by a mixture of spinel (MgAl2O4) and MgO seems to diminish the protective properties of the passive layer on the surface of the alloys in as-received condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号