首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
微极流体薄膜层通过按滑移速度移动的可渗透无限竖直平板时,研究热辐射对混合对流薄膜层流动和热传导的影响.假定流体粘度和热传导率变化是温度的一个函数.对一些典型的可变参数值,应用Chebyshev谱方法,数值求解流动的控制方程.将所得结果与已发表文献的结果进行比较,结果是一致的.绘出并讨论了可变参数对速度、微旋转速度、温度分布曲线、表面摩擦因数和Nusselt数的影响.  相似文献   

2.
二次分配问题是具有广泛应用背景的经典组合优化难题之一。本文在二次分配问题已有线性化模型的基础上,提出了一种新的基于流量的线性化模型。数值试验结果表明,新模型无论从时间上还是计算节点数都更具有优势。  相似文献   

3.
Pulsatile blood flows in curved atherosclerotic arteries are studied by com- puter simulations.Computations are carried out with various values of physiological parameters to examine the effects of flow parameters on the disturbed flow patterns downstream of a curved artery with a stenosis at the inner wall.The numerical re- suits indicate a strong dependence of flow pattern on the blood viscosity and inlet flow rate,while the influence of the inlet flow profile to the flow pattem in downstream is negligible.  相似文献   

4.
基于有限体积法和有限元法,结合动网格控制技术,建立了横向流体作用下三维弹性直管流致振动计算的数值模型,实现了计算结构动力学与计算流体力学之间的联合仿真.首先,通过对刚性管的静止绕流计算,研究了网格离散方式和不同湍流模型对圆柱类结构静止绕流流场特征的影响和预测能力,得到了适用于双向耦合分析的CFD模型;其次,利用基于双向流固耦合方法的流致振动模型,计算并分析了流体力与结构位移间的相位关系,指出流体力与位移间的相位差是由流体力引起的,同时对双向耦合和单向耦合进行了比较分析;最后通过对直管流致振动的数值计算,联合管表面压力、尾流区时均速度、分离角等时均量,分析了尾流区的流场特征.  相似文献   

5.
Petr Louda  Jaromír Příhoda  Karel Kozel 《PAMM》2007,7(1):4100011-4100012
The numerical simulation of turbulent flow over rough walls was carried out for various types of roughness. The mathematical model was based on the Reynolds averaged Navier-Stokes equations for incompressible flow. The two-equation SST and oneequation Spalart-Allmaras turbulence models were used. Boundary conditions on rough walls were prescribed directly on the wall using the SST model modified to account for wall roughness by Hellsten and Laine (1997) and the SA model modified by Aupoix and Spalart (2003). Turbulence models were tested for the constant pressure turbulent boundary layer on the rough wall formed by commercial abrasive paper and by tightly packed spheres. The effect of wall roughness on the decelerated flow over a smoothly contoured ramp with flow separation was investigated. Obtained results were compared with experimental data. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
分析在平行自由流动的非牛顿黏弹性导电流体中,连续平展表面移动时的稳态流和热传递特性,该流动处于横向均匀磁场作用下.以二阶流体构建它的本构方程,得到了速度分布和温度断面图的数值结果.讨论了诸如黏弹性参数、磁场参数和Prandtl数等不同物理参数对诸种动量和热传递特性的影响,并给出相关图示.  相似文献   

7.
Any weak, steady vortical flow is a solution to leading order of the inviscid fluid equations with a free surface, so long as this flow has horizontal streamlines coinciding with the undisturbed free surface. This work considers the propagation of irrotational surface gravity waves when such a vortical flow is present. In particular, when the vortical flow and the irrotational surface waves are both periodic, resonant interactions can occur between the various components of the flow. The periodic vortical component of the flow is proposed as a model for more complicated vortical flows that would affect surface waves in the ocean, such as the turbulence in the wake of a ship. These resonant interactions are studied in two dimensions, both in the limit of deep water (Part I) and shallow water (Part II). For deep water, the resonant set of surface waves is governed by “triad-like” ordinary differential equations for the wave amplitudes, whose coefficients depend on the underlying rotational flow. These coefficients are calculated explicitly and the stability of various configurations of waves is discussed. The effect of three dimensionality is also briefly mentioned.  相似文献   

8.
为了在低马赫数到高马赫数范围内求解可压缩Navier-Stokes方程,给出了基于预处理算法的PLU-SGS方法.将高分辨率AUSMPW格式与三阶MUSCL格式融合,将其扩展到三阶精度,并采用特征边界条件.为了验证该方法的有效性,通过求解曲线坐标系可压缩Navier-Stokes方程,对几个典型流动问题进行了数值计算.计算结果与文献计算结果或实验数据比较表明,该方法对不同马赫数Navier-Stokes方程的计算,具有较高的计算精度和收敛速度以及良好的稳定性.  相似文献   

9.
分析了化学反应,对流过半无限竖直多孔板的、粘性耗散的、非定常的磁流体流动的影响.利用随时间变化的相似参数,将运动、能量、溶质的控制方程变换为常微分方程,并用有限单元法数值地求解所得到的常微分方程.用图形给出了不同参数对速度、温度和浓度分布的影响,用表格给出了不同物理参数值时,表面摩擦力、Nusselt数和Sherwood数的数值.  相似文献   

10.
The formation of steady-state structures near the end face of a body placed in a supersonic flow with an asymmetrically located energy source is simulated and studied. The parameters of the steady-state flow structures undergo several oscillations with roughly equal amplitudes and periods. Depending on the location of the source relative to the body, structures with various numbers of elements (from one to four) are observed in the simulation.  相似文献   

11.
用一种强有力的解析方法,称为Adomian分解法(ADM),来研究磁场和纳米颗粒对Jeffery-Hamel流动的影响.将该问题模型的控制方程,即将传统的流体力学Navier-Stokes方程和Maxwell电磁方程,简化为非线性的常微分方程.该方法得到的结果与Runge-Kutta方法得到的数值结果相一致,结果用表格列出.不同α,Ha和Re数下的图形表明,本方法可以得到高精度的结果.首先对不同的Hartmann数和管壁倾角,研究喇叭形管道中的流场;最后在没有磁场作用时,研究纳米固体颗粒体积率的影响.  相似文献   

12.
A CFD code in the framework of OpenFOAM was validated for simulations of particle-laden pipe and channel flows at low to intermediate mass loadings. The code is based on an Eulerian two-fluid approach with Reynolds-averaged conservation equations, including turbulence modeling and four-way coupling. Pipe flow simulations of particles in air against gravity were conducted at Reynolds numbers up to 50000. The particle mass loading was varied and its effect on the mean velocities and turbulent fluctuations of the two phases was studied. Special attention was paid to the influence of mass loading on the centerline velocity and the wall shear velocity of the fluid phase for various flow parameters and particle properties. Empirical correlations were established between these two quantities and the flow Reynolds number, particle Reynolds number, Stokes number and particle to fluid density ratio for a range of particle mass loadings. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
研究了可渗透壁面上Falkner-Skan磁流体动力学(MHD)边界层流动问题.利用结合了微分变换法(DTM)和Padé近似的DTM-Padé方法,得到了边界层问题的近似解和壁摩擦因数值.通过建立一个迭代程序,边界层问题的近似解被表示为幂级数的形式,而且以图和表形式对不同参数下的近似解结果与打靶法得到的数值结果进行了对比,近似解和数值解结果高度吻合,从而验证了所得问题近似解和结论的可靠性和有效性.并且,对求得的边界层问题近似解结果进行了讨论,分析了不同物理参数对边界层流动的影响.  相似文献   

14.
应隆安  魏万明 《计算数学》1993,15(2):129-142
[1]中讨论了无界区域上轴对称Stokes绕流的无限元方法,我们利用转移矩阵X以及组合刚度矩阵K_z将问题归结为一个有限阶代数方程组。[1]又给出了两种计算K_z的迭代方法,并证明了迭代方法的收敛性。最后证明了无限元解收敛于精确解,估计了误差的阶。这个方法的优点是:无穷远边界条件自然,计算规模小,边界形状不受限制,程序通用,并且理论基础比较完整。 本文是[1]的继续。我们将迭代格式作了一些简化,使之更便于计算;并且利用这种  相似文献   

15.
The nonisothermal steady rarefied gas flow driven by a given pressure gradient (Poiseuille flow) or a temperature gradient (thermal creep) in a long channel (pipe) of an arbitrary cross section is studied on the basis of the linearized kinetic S-model. The solution is constructed using a high-order accurate conservative method. The numerical computations are performed for a circular pipe and for a cross section in the form of a regular polygon inscribed in a circle. The basic characteristic of interest is the gas flow rate through the channel. The solutions are compared with previously known results. The flow rates computed for various cross sections are also compared with the corresponding results for a circular pipe.  相似文献   

16.
The pressure signal of a slurry column is easily obtained by using a pressure sensor, and a chaotic analysis method is used to analyze these signals in order to indicate the flow pattern of the slurry column. The slopes of the correlation integral curve indicate the flow pattern of the slurry column in various operating conditions. The flow pattern is dispersed bubble regime when the superficial velocity is low and the correlation integral curve has two slopes. The flow pattern changes into transition regime with increase in the superficial velocity, the correlation integral curve has only one slope. In the case of the flow pattern becoming a slugging regime, there are several slopes to the correlation integral curve. So it is convenient to find out the flow pattern in the slurry column by solving the slopes of the correlation integral of the pressure signal. The maximum Lyapunov exponent represents the chaos in a slurry column with various solid holdups. The maximum Lyapunov exponent is nearly similar at different heights when the flow patterns are dispersed bubble regime and slugging regime, but the maximum Lyapunov exponent at the axial height is quite different when the flow pattern is transition regime.  相似文献   

17.
运用作者推导的动量积分关系式,分析了向有积水的斜置管道中分别吹入轴向气流和螺旋气流时积水的运动情况。结果表明:在大多数情况下,螺旋气流能除去斜置管道中积水;而轴向气流不能除去积水,一段时间后会出现逆流。这一结果与Horii和赵耀华等人在这个问题上所做的实验结果一致。此外,还讨论了不同的初始条件对排水情况的影响。  相似文献   

18.
In this study, we model the flow of a third grade fluid in a porous half space. Based on modified Darcy’s law, the flow over a suddenly moved flat plate is discussed numerically. The influence of various parameters of interest on the velocity profile is seen.  相似文献   

19.
Exact analytical solutions for the velocity profiles and flow rates have been obtained in explicit forms for the Poiseuille and Couette-Poiseuille flow of a third grade fluid between two parallel plates. These exact solutions match well with their numerical counter parts and are better than the recently developed approximate analytical solutions. Besides, effects of various parameters on the velocity profile and flow rate have been studied.  相似文献   

20.
This work focuses on the prediction of the turbulent flow in a three-dimensionial Confined Impinging Jets Reactor with a cylindrical reaction chamber by using Large Eddy Simulation. Three-dimensional unsteady simulations with different sub-grid scale models, numerical schemes and boundary conditions were performed for various flow rates, covering different flow regimes. First, a qualitative analysis of the flow field was carried out and then predictions of the mean and fluctuating velocities were compared with micro Particle Image Velocimetry data. Good agreement was found both for the mean velocity components and the fluctuations. For low to moderate Reynolds numbers the sub-grid scale model was found not to be very relevant, since small scales are of less importance, as long as scalar transport and chemical reaction are not in play. An important finding is the good prediction of the high velocity fluctuations detected in particular at higher Reynolds number due to the natural instability of the system, strongly enforced by the jets unsteadiness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号