首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we will consider an infinite elastic body with a spherical cavity and constant elastic parameters. The governing equations are taken in the context of the two-temperature generalized thermoelasticity theory (Youssef in J Appl Math Mech 26(4):470–475 2005a, IMA J Appl Math, pp 1–8, 2005). The medium is assumed initially quiescent. Laplace transform and state space techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem when the bounding plane of the cavity is subjected to thermal loading (thermal shock and ramp-type heating). The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the two-temperature and the ramping parameters.  相似文献   

2.
This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.  相似文献   

3.
The present investigation is concerned with an axi-symmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The expressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.  相似文献   

4.
The theory of thermoelasticity based on the heat conduction equation with the Caputo time-fractional derivative of order α is used to study thermal stress in an infinite medium with a cylindrical hole. Two types of Neumann boundary conditions are considered: the constant value of the normal derivative of the temperature and constant heat flux at the surface of a cavity. The solution is obtained applying Laplace and Weber integral transforms. Numerical results are illustrated graphically.  相似文献   

5.
The paper presents a solution to the problem of thermal conduction and thermoelasticity for a thin shallow spherical shell heated by a concentrated or local impulsive heat source moving over the shell surface. It is assumed that temperature is linearly distributed across the shell thickness and that the shell, on its sides, exchanges heat with the environment in accordance with Newton’s law of cooling. The Fourier and Laplace transforms are used to find an analytic solution. The dependence of the temperature field and stress/strain components on the type of heating and the form of heat source is studied __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 11, pp. 85–92, November 2006.  相似文献   

6.
In this work,a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed.The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions.The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity.The inverse Laplace transforms are computed numerically,and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.  相似文献   

7.
The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace transformation, the fundamental equations are expressed in the form of a vector-matrix differential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the thermal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion techniques. The numerical values of the physical quantity are computed for the copper like material. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.  相似文献   

8.
This paper deals with a two-dimensional (2D) problem for a transverselyisotropic thick plate having heat sources and body forces. The upper surface of the plate is stress free with the prescribed surface temperature, while the lower surface of the plate rests on a rigid foundation and is thermally insulated. The study is carried out in the context of the generalized thermoelasticity proposed by Green and Naghdi. The governing equations for displacement and temperature fields are obtained in the Laplace-Fourier transform domain by applying the Laplace and Fourier transforms. The inversion of the double transform is done numerically. Numerical inversion of the Laplace transform is done based on the Fourier series expansion. Numerical computations are carried out for magnesium (Mg), and the results are presented graphically. The results for an isotropic material (Cu) are obtained numerically and presented graphically to be compared with those of a transversely isotropic material (Mg). The effect of the body forces is also studied.  相似文献   

9.
A model of the equations of generalized magneto-thermoelasticity in a perfectly conducting medium is given. The formulation is applied to generalizations, Lord–Shulman theory with one relaxation time and the Green–Lindsay theory with two relaxation times, as well as to the coupled theory.Laplace transforms and Fourier transforms techniques are used to get the solution. The resulting formulation is used to solve a specific two-dimensional problem. The inverses of Fourier transforms are obtained analytically.Laplace transforms are obtained using the complex inversion formula of the transform together with Fourier expansion techniques.Numerical results for the temperature distribution, thermal stress and displacement components are represented graphically. A comparison was made with the results predicted by the three theories.  相似文献   

10.
The fundamental transient-thermoelastic problem with body forces and a heat source in vertically inhomogeneous media is investigated by a method presented in this paper. The basic equations in Fourier transforms and Laplace transform are obtained in the form of two sets of first order linear ordinary differential equations inz, Eq. (7). Furthermore, forN-layered media, the general solution in the transformed spaces of thej-th layer is given for fully connected interface between layers, Eq. (11). Finally, under general condition, a closed-form solution for the quasi-static transient displacements, stresses, temperature in the body can be obtained by the convolution theorems for the two integral transforms. In the final solution, the Green's functions can be expressed in terms of Hankel transforms of order zero and unity as well as inverse Laplace transform, and come out rather neatly. Comprehensive Institute of Geotechnical Investigation and Surveying, Ministry of Urban and Rural Construction and Environmental Protection  相似文献   

11.
In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in a unified system from which the field equations for coupled thermoelasticity as well as for generalized thermoelasticity can be easily obtained as particular cases. A linear temperature ramping function is used to more realistically model thermal loading of the half-space surface. The medium is assumed initially quiescent. Laplace and Fourier transform techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to ramp-type heating. The inverse Fourier transforms are obtained analytically while the inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the ramping parameter of heating with different theories of thermoelasticity.  相似文献   

12.
In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in the context of the two-temperature generalized thermoelasticity theory [Youssef, H., 2005a. The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, J. Appl. Math. Mech., 26(4), 4827; Youssef, H., 2005b. Theory of two-temperature generalized thermoelasticity, IMA J. Appl. Math., 1–8]. The medium is assumed initially quiescent. Laplace transform and state space techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to thermal shock and traction free. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the two-temperature parameter.  相似文献   

13.
The article presents an analytical solution for magneto–thermo–electro–elastic problems of a piezoelectric hollow cylinder placed in an axial magnetic field subjected to arbitrary thermal shock, mechanical load and transient electric excitation. Using an interpolation method solves the Volterra integral equation of the second kind caused by interaction among magnetic, thermal, electric and mechanical fields, the electric displacement is determined. Thus, the exact expressions for the transient responses of displacement, stresses, electric displacement, electric potential and perturbation of the magnetic field vector in the piezoelectric hollow cylinder are obtained by means of Hankel transforms, Laplace transforms, and inverse Laplace transforms. From sample numerical calculations, it is seen that the present method is suitable for a piezoelectric hollow cylinder subjected to arbitrary thermal shock, mechanical load and transient electric excitation, and the result carried out may be used as a reference to solve other transient coupled problems of magneto–thermo–electro–elasticity.  相似文献   

14.
A numerical analytic method is proposed to solve nonstationary coupled problems of thermoelasticity with regard to the finite velocity of thermal waves. The method is used to analyze the nonstationary spatial propagation of elastic waves from a cavity subjected on its surface to mechanical and thermal loads. The ray theory of propagation of wavefield discontinuities is used. To determine the time dependence of the field parameters behind the wavefront and to account for the relationship between the mechanical and thermal fields with prescribed accuracy, a numerical iterative procedure that employs the properties of characteristics is used. Plots are presented for the nonstationary stresses and temperature near a prolate spheroidal cavity subject to step mechanical loading and near an elliptical cylindrical cavity subject to thermal shock __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 8, pp. 79–88, August 2006.  相似文献   

15.
Summary The paper presents a solution for the linear thermoelastic problem of determining axisymmetric stress and displacement fields in an isotropic elastic solid of infinite extent weakened by an external circular crack under general mechanical loadings and general thermal conditions. The mechanical loadings and thermal conditions applied on the crack faces are axisymmetric, being non-symmetric about the crack plane. In similar lines of [7], equations of equilibrium of an elastic solid conducting heat have been solved using Hankel transforms and Abel operators of the first kind. Expressions for stress, displacement, temperature and heat flux functions are obtained in terms of Abel transforms of the first kind of the jumps of stress, displacement, temperature and heat flux at the crack plane. Two types of thermal conditions, that is, general surface temperatures and general heat flux on faces of the crack are considered. In both the cases, closed form solutions have been obtained for the unknown functions solving Abel type of integral equations. Explicit expressions for stresses, displacements, temperature fields, stress intensity factors have been obtained. Two special cases of thermal conditions in which: (i) crack faces are subjected to constant non-symmetric temperatures over a circular ring area, (ii) crack faces are subjected to constant non-symmetric heat flux over a circular ring area, have been considered. In some special cases, results have been compared with those from the literature.  相似文献   

16.
The present problem is concerned with the study of deformation of a rotating generalized thermoelastic solid with an overlying infinite thermoelastic fluid due to different forces acting along the interface under the influence of gravity.The components of displacement,force stress,and temperature distribution are first obtained in Laplace and Fourier domains by applying integral transforms,and then obtained in the physical domain by applying a numerical inversion method.Some particular cases are also discussed in the context of the problem.The results are also presented graphically to show the effect of rotation and gravity in the medium.  相似文献   

17.
In this work we introduce a model of the boundary layer equations for a perfect conducting micropolar fluid with stretch, bounded by an infinite vertical flat plane surface of a constant temperature. This model is applied to study the effects of free convection currents on the flow of the fluid in the presence of a constant magnetic field. The state space technique is adopted for the solution of a one‐dimensional problem for any set of boundary conditions. The resulting formulation together with the Laplace transform techniques are applied to a thermal shock problem. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results are given and illustrated graphically for the problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Thermoelastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity are studied. The cavity surface is subjected to ramp-type heating of its internal boundary, which is assumed to be traction free. Lord–Shulman and Green–Lindsay models for the generalized thermoelasticity theories are selected since they allow for second-sound effects and reduce to the classical model for an appropriate choice of the parameters. The temperature, radial displacement, radial stress, and hoop stress distributions are computed numerically using the finite-element method (FEM). The results are presented graphically for different values of the thermal relaxation times using the three different theories of generalized thermoelasticity. Excellent agreement is found between the finite-element analysis and analytical and classical solutions.  相似文献   

19.
In this work, a problem of thermoelastic interactions in an elastic infinite medium with cylindrical cavity thermally shocked at its bounding surface and subjected to moving heat source with constant velocity has been solved. The governing equations are taken in the context of two-temperature generalized thermoelasticity theory (Youssef model). The analytical solution with direct approach in the Laplace transforms domain has been obtained. The derived analytical expressions have been computed for specific situations. Numerical results for the dynamical and conductive temperatures, stress, strain, and displacement are represented graphically with comparisons by one-temperature generalized thermoelasticity (Lord–Shulman model).  相似文献   

20.
The transient dynamic coupled-thermoelasticity problem of a half-space under the action of a buried thermal/mechanical source is analyzed here. This situation aims primarily at modeling underground explosions and impulsively applied heat loadings near a boundary. Also, the present basic analysis may yield the necessary field quantities required to apply the Boundary Element Method in more complicated thermoelastodynamic problems involving half-plane domains. A material response for the half-space predicted by Biots thermoelasticity theory is assumed in an effort to give a formulation of the problem as general as possible (within the confines of a linear theory) . The loading consists of a concentrated thermal source and a concentrated force (mechanical source) having arbitrary direction with respect to the half-plane surface. Both thermal and mechanical line sources are situated at the same location in a fixed distance from the surface. Plane-strain conditions are assumed to prevail. Our problem can be viewed as a generalization of the classical Nakano–Lapwood–Garvin problem and its recent versions due to Payton (1968) and Tsai and Ma (1991) . The initial/boundary value problem is attacked with one- and two-sided Laplace transforms to suppress, respectively, the time variable and the horizontal space variable. A 9×9 system of linear equations arises in the double transformed domain and its exact solution is obtained by employing a program of symbolic manipulations. From this solution the two-sided Laplace transform inversion is then obtained exactly through contour integration. The one-sided Laplace transform inversion for the vertical displacement at the surface is obtained here asymptotically for long times and numerically for short times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号