首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ab initio calculations on the structure and geometry of the three isomers of N2H2 (trans-diimide, cis-diimide, and 1,1-dihydrodiazine) were performed both on HF and CI level using gaussian basis sets with polarization functions. The trans and cis isomers have singlet ground states; the trans isomer is found to be lower in energy than the cis isomer by 6.9 kcal/mol (HF) and 5.8 kcal/mol (CI), respectively. The barrier for the trans-cis isomerization is predicted to be 56 (HF) and 55 (CI) kcal/mol. H2 N=N has a triplet ground state with a non-planar equilibrium geometry and a rather long NN bond of 1.34 Å. Its lowest singlet state, however, is planar with an NN double bond of 1.22 Å; it is found to lie about 3 kcal/mol above the triplet and 26 kcal/mol above the singlet ground state of trans-diimide.  相似文献   

2.
SCF and CI calculations were carried out on the ground1A state of HN3. The equilibrium geometry and vibration frequencies were computed. The results point to a planar structure (groupC s) but to a non-linear (170 °) N-N-N conformation. The calculated vibration frequencies are in fair agreement with experimental assignments.The dissociation path of the molecule to NH and N2 products was investigated and compared to the isoelectronic reaction of diazomethane. The dissociation energy of hydrazoic acid is estimated to be about –8 kcal/mole, with a potential barrier to dissociation of about 30 kcal/mole.Boursier IRSIA  相似文献   

3.
The interaction between the molecules ethylene and cis-N2H2 has been studied using a gaussian basis in a series of ab initio SCF calculations. The results obtained indicate that the synchronous hydrogen transfer reaction is a one-step reaction having an activation energy of around 60 kcal/mol. Our results do not lend support to the hypothesis that the rate of the overall reaction between C2H4 and N2H2 is controlled by the rate of isomerization of trans-diimide to the cis form.  相似文献   

4.
Summary.  Thermal one- and two-bond dissociation processes of cis- and trans-azomethane were studied by ab initio computation with DZP and TZ2P basis sets, using the d(N–C) bond lengths as the reaction coordinates. The geometries were optimized at the MP2 level, and the dissociation energies obtained exploiting a single-point, fourth-order M?ller–Plesset calculations [MP4SDTQ/TZ2P]. At this level of theory including zero-point energies, the trans-isomer is by 9.3 kcal/mol more stable than the cis-isomer. The results show that the energetically more favourable one-bond cleavage proceeds without transition state with the predicted bond dissociation energy D 0 of 47.8 kcal/mol for trans-azomethane and 38.5 kcal/mol for cis-azomethane. With calculated barrier heights the unimolecular dissociation rate constants have been determined by means of the RRKM theory. The second-order saddle points localized for synchronous decomposition pathways lie 13 (trans)-23(cis) kcal/mol above the one-bond dissociation energies [MP2/DZP]. Received May 28, 1996/Final version received November 1, 1996 / Accepted November 1, 1996  相似文献   

5.
The fully optimized geometry of the activated complex which occurs as an intermediate in the concerted H-transfer reaction between C2H4 and cis-N2H2 has been determined using the ab initio FORCE method of Pulay. The activation energy for the synchronous transfer of two hydrogen atoms from cis-N2H2 to ethylene is found to be 18.8kcal/mol, i.e. substantially lower than the previously estimated energy barrier of around 60 kcal/mol. The same method applied to trans-N2H2 and semilinear N2H2 gave an isomerization energy of 49.7 kcal/mol indicating that the isomerization of trans-N2H2 to the cis form might be the overall rate-controlling step.  相似文献   

6.
Gas-phase reaction of acetylene with HgCl2 resulting in -chlorovinylmercury derivatives and their interaction with Cl and I anions and KI molecule was studied by the ab initio MP2 method with the Dunning—Hay double zeta basis set and LanL pseudopotential for Hg, K, and I atoms. The reaction was shown to proceed via a -complex of acetylene and HgCl2 (the calculated enthalpy of formation is –6.5 kcal mol–1). According to calculations, the activation energy of formation of cis--chlorovinylmercury chloride from acetylene and HgCl2 is 31 kcal mol–1. Chloride and iodide anions and KI molecule are readily added to both cis- and trans-isomer of -chlorovinylmercury chloride to give stable species.  相似文献   

7.
The least-energy dissociation path of the ground state of CH2N2 was determined fromab initio calculations using in a complementary way basis sets of minimal size (STO-3G) and double-zeta (DZ) quality. The results indicate that the least-energy point of attack of the N2 molecule on CH2 (1 A 1) is roughly perpendicular to the molecular plane (93 °), the C and N atoms being almost co-linear (angle C-N-N203 ° with outermost N atom pointing away from CH2). The potential barrier of 1.2 eV found previously on theC 2v dissociation path, disappears completely along the least-energy dissociation path (point groupC s (out-of-plane)). These findings corroborate the Woodward-Hoffman rules for this process since the outermost orbitals of the two intersecting states found in point groupC 2v (...2b 1 and ...8a 1) both correlate to the same irreducible representation (10á) in point groupC s (out-of-plane).Larger basis set calculations (DZ + polarization functions on all centers, 3d c and 3d N developed here), were also carried out on CH2N2 (1 A 1,3 A 2 and1 A 2) at the1 A 1 equilibrium geometry and on CH2 (3 B 1) and N2 (1 g + ) at their respective equilibrium geometries. These calculations, together with consideration of correlation energy differences, yieldD 0 0 (CH2N2,1 A 1) = 19 kcal/mole and vertical excitation energies of 67 and 73 kcal/mole for the3 A 2 and1 A 2 states respectively. The latter value is in good agreement with the measured experimental value: 72.4 kcal/mole corresponding to the maximum of intensity in the1 A 21 A 1 absorption band.  相似文献   

8.
Ab initio SCF calculations of cis- and trans-stilbene at different conformations were performed using two program systems. Minimal energy is obtained for cis-stilbene when the phenyl rings are rotated by 52 ° out of the molecular plane. The deviation from planarity due to steric hindrance is smaller for the trans isomer yielding a rotational angle of 19 °. The trans isomer is calculated to be more stable by 5.7 kcal/mole than the cis isomer, confirming the experimental estimate according to which the energy of isomerization is about 3 kcal/mole. This is an improvement over semiempirical calculations which predict a lower energy for the trans configuration.  相似文献   

9.
N-Substituted-2-carboxamido-1-cycloalkanols were cyclized with 1,1-carbonyldiimidazole to synthesizecis- andtrans-N-alkyl-,N-aralkyl- andN-aryl-2,4-dioxo tri- and tetramethyleneperhydro-1,3-oxazines. The structures of the compounds and theircis ortrans ring anellation were confirmed by IR,1H- and13C-NMR spectroscopy, and thecis andtrans pairs of isomers were compared to establish the predominant conformation of the flexiblecis isomers. It was found that—similarly to the 1,3-oxazin-2- and -4-ones studied earlier—the O-endo conformers are preferred, in which the 1-oxygen atom isaxial to the alicyclic ring; this is independent of the number of ring atoms in the alicycle, and of the presence of an oxazinedione ring, even though this is more flexible that the ring of oxazinones.
Synthese und Konformation voncis undtrans 2-substituierten kondensierten 1,3-Oxazin-2,4-dionen
Zusammenfassung cis- undtrans-N-Alkyl-,N-Aralkyl- undN-Aryl-2,4-dioxo-, tri- und tetramethylen-perhydro-1,3-oxazine wurden aus 2-Carboxamido-1-cycloalkanolen und 1,1-Carbonyldiimidazol dargestellt. Mit Hilfe der IR,1H- und13C-NMR Spektroskopie wurden die Struktur, diecis- odertrans-Annellierung der Ringe und die bevorzugte Konformation der flexiblencis-Isomeren im Vergleich zumcis-trans Isomerenpaar nachgewiesen. Ähnlich zu den früher untersuchten 1,3-Oxazine-2- und -4-onen ist hier ebenfalls das O-endo Konformere bevorzugt; in diesem ist der Sauerstoffaxial angeordnet, und zwar unabhängig von der Zahl der alicyklischen Ringatome und dem flexibleren Oxazindionring.
  相似文献   

10.
Combined experimental and theoretical studies of the reactions


and

were carried out in the present work. The rate constant of reaction (1) was investigated in the temperature range 293 K T612 K using the laser photolysis continuous-wave laser-induced fluorescence technique for the production and detection of NH2. The results are well described by k1(T)=5.43×T−4.02 exp(−1034K/T) cm3 molecule−1 s−1. Stationary points on the potential energy surface were characterized using the gaussian-2 (G2) ab initio method. The surface is complex, with hydrogen-atom transfers and cis—trans isomerization connecting five stable adduct species.The product distribution of reaction (2) was studied at room temperature using the discharge flow technique with mass spectrometric detection of the reaction products. Measured branching fractions for the production of N2O+H(D) were k2a/k2 = 0.84±0.4 for NH+NO and k2a/k2 = 0.87±0.17 for ND+NO. Stationary points on the ground 2A′ surface were calculated using the G2 method. The transition state energy for the dissociation of the cis isomer into H+N2O was found to be lower than the transition state energy for dissociation into OH+N2. Additionally, trans-HNNO was found to isomerize to cis-HNNO before dissociation.For reaction (3), the molecular properties of all relevant intermediates and transition states on the ground state potential energy surface were determined using the G2 method. The results predict the formation of three intermediates, H2NO, trans-HNOH and cis-HNOH, all exothermic relative to the reactants. The transition states separating these intermediates from one another and their products (H2+NO, H+HNO(1A′) or NH+OH) were also characterized, several for the first time.  相似文献   

11.
Large basis set ab initio calculations at correlated levels, including MP2, single reference, as well as multireference configuration interaction, carried out on the methane potential energy surface, have located and characterized a transition structure for stereomutation (one imaginary frequency). This structure is best described as a pyramidal complex between singlet methylene and a side-on hydrogen molecule with Cs symmetry. At the single reference CI level, it lies 105 kcal/mol above the methane Td-ground state but is stable relative to dissociation into CH2(1A1) and H2 by 13 kcal/mol at 0 K (with harmonic zero point energy (ZPE) corrections for all structures). Dissociation of the transition state into triplet methylene and hydrogen also is endothermic (by 4 kcal/mol), but single bond rupture to give CH and H. is 3 kcal/mol exothermic. Thus, it does not appear likely that methane can undergo stereomutation classically beneath the dissociation limit. Confirming earlier conclusions, side-on insertion of 1A1 CH2 into H2 in a perpendicular geometry occurs without activation energy. Planar (D4h) methane (130.5 kcal/mol) has four imaginary frequencies. Two of these are degenerate and lead to equivalent planar C2v structures with one three-center, two-electron bond and two two-electron bonds and two imaginary frequencies. The remaining imaginary frequencies of the D4h form lead to tetrahedral (Td) and pyramidal (C4v) methane. The latter has three negative eigenvalues in the force-constant matrix; one of these leads to the Td global minimum and the other to the Cs (parallel) stereomutation transition structure. Multireference CI calculations with a large atomic natural orbitals basis set produce similar results, with the electronic energy of the Cs stereomutation transition state 0.7 ± 0.5 kcal/mol higher than that of CH + H. dissociation products, and a ZPE-corrected energy which is 5 ± 1 kcal/mol higher. Also considered are photochemical pathways for stereomutation and the possible effects of nuclear spin, inversion tunneling, and the parity-violating weak nuclear interaction on the possibility of an experimental detection of stereomutation in methane. © 1995 by John Wiley & Sons, Inc.  相似文献   

12.
The changes in free energy, enthalpy and entropy for the dissociation of several -oxooximes (phenylglyoxal aldoxime, glyoxylanilide oxime,N-ethyl-glyoxylanilide oxime and 1-phenyl-1,2-propanedione-2-oxime) have been determined in water-ethanol medium (50% v/v) at 0.5M ionic strength (NaNO3) and 25 °C. The changes in dissociation free energy were calculated from the pK a values determined by glass-electrode potentiometry, and refined by using the programs MINIGLASS and SUPERQUAD. The dissociation enthalpies were determined by direct thermometric titration, and refined by using the programs MINITERM and MULTITERM.  相似文献   

13.
14.
The thermal unimolecular reactions of cis- and trans-penta-1,3-diene (c-PTD and t-PTD) have been studied over the temperature range of 1002–1235 K using the technique of very low-pressure pyrolysis (VLPP). c-PTD decomposes via 1,4-hydrogen elimination analogous to that previously reported for cis-but-2-ene. RRKM calculations incorporating a six-center transition state show that the experimental rate constants are consistent with the following high-pressure rate expression at 1100 K: where θ = 2.303RT kcal/mol, and the A factor was assumed to be the same as that for cis-but-2-ene. The activation energy is in excellent agreement with that obtained for cis-but-2-ene. t-PTD also undergoes decomposition by H2 elimination presumably via the prior rapid isomerization to c-PTD the results are in exact agreement with those for c-PTD.  相似文献   

15.
The kinetics and stoiehiometry of the decomposition of N2H2 and N2D2 have been studied as a function of sample size, pressure, and temperature. The reaction follows a single first order kinetic expression over most of its time course. It is suggested that the rate-determining step in the mechanism is a first-order homogeneous gas-phase isomerization of trans-diimide with rate constants:k = 1.8 exp (-4.2 kcal/mol/RT) sec?1 and k = 1 exp (-4.4 kcal/mol/RT) sec?1. The detailed mechanism of this isomerization, however, is not evident. At temperatures above room temperature, self-heating has been observed which leads to an initial fast decay. At room temperature the reaction exhibits autocatalysis with the rate increasing as the reaction proceeds. This has been attributed to enhancement by a surface decay process involving adsorbed hydrazine. The only significant products from the decomposition of N2H2 are N2, H2, and N2H4, and the results are interpreted in terms of two parallel reactions: The decomposition of N2D2 occurs almost completely by the single reaction giving N2 + N2D4. No azide formation has been detected from either N2D2, or N2D2, and limits have been put on the yield of ammonia. Extinction coefficients at 365 nm of 3.9 ± 0.2 for N2H2 and 3.3 ± 0.1 for N2D2 have been measured. Both the rate of decay and the stoichiometry of products show pressure dependence below 150 torr, and this is suggested to be due to direct decomposition of cis-N2H2 on the surface.  相似文献   

16.
A series of ab initio calculations is reported for the ground and low-lying valence and Rydberg states of diimide N2H2. Symmetric bending potential curves for both the cis and trans forms of this system have been obtained at the SCF level of treatment. In addition Cl calculations have been carried out for the trans-diimide ground state equilibrium nuclear conformation, using a configuration selection procedure described elsewhere; an associated energy extrapolation scheme is also employed which enables the effective solution of secular equations with orders of up to 40000. The ensuing Cl wavefunctions are interpreted in the discussion and the corresponding calculated energy differences between the various electronic states are compared with experimental transition energy results for both diimide and for related systems such as trans-azomethane. A more detailed analysis of the observed absorption bands in the 1Bg-X1Ag transition in N2H2 is also given, making use of calculated potential curve data as well as the pertinent Cl vertical energy difference. The dipole-forbiddenness of the excitation process is thereupon concluded to result in a distinct non-verticality for this electronic band system, causing its absorption maximum to occur at a position some 0.6 eV to the blue of the so-called vertical transition, i.e., that for which maximum vibrational overlap is obtained.  相似文献   

17.
The effects of -cyclodextrin (-CyD), heptakis(2,6-di-O-methyl)--cyclodextrin (DMCyD) and heptakis(2,3,6-tri-O-methyl)--cyclodextrin (TMCyD) ontrans-cis photoisomerization of 1-ethyl-4-(4-hydroxystyryl)pyridinium (POH) have been studied in aqueous solutions. The ratio of [cis]/[trans] for POH in the photostationary state at pH 8.54 was remarkably reduced by the presence of CyD or DMCyD. The reduction of the [cis]/[trans] ratio in the photostationary state was explained in terms of the shift of the equilibrium of POH + trans PO trans + H toward PO trans formation. The binding constants of CyD and DMCyD for PO trans were 2.00- and 1.36-fold larger than those for POH + trans , respectively. The binding constants of TMCyD for both species are much smaller than those of CyD and DMCyD. This result indicates that PO trans , which has a betain structure, forms stable complexes with CyD and DMCyD with its hydrophobic parts inside and the charged parts outside the CyD cavities.  相似文献   

18.
The C8H12-Energy Hypersurface Thermolysis of syn- and anti-Tricyclo[4.2.0.02,5]octane. Experimental and Theoretical Studies The thermal behaviour of syn- and anti-tricyclo[4.2.0.02,5]octanes 9 and 10 in the gas phase as well as in solution is investigated. Two Mayn products are formed in parallel reactions: cis, cis-1,5-cyclooctadiene ( 11 ) and cis, trans-1,5-cyclooctadiene ( 15 ), the latter being partly isomerized to 11 under the reaction conditions. Minor products are cis-1,2-divinylcyclobutane ( 6 ), trans-1,2-divinylcyclobutane ( 16 ) and 4-vinyl-1-cyclohexene ( 17 ). Thermolysis of cis-1,2-divinylcyclobutane leads to small amounts of cis, trans-cyclooctadiene, presumably via a four-centre transition state. The tricyclics most likely prefer a stepwise isomerization. The decisive product-controlling factor seems to be the conformational mobility of intermediate diradicals. By comparison with the boat-Cope reaction of divinylcyclobutane the pericyclic six-centre transition state of this rearrangements is shown to lie energetically about 19 kcal/mol below the transition states in the thermolysis of 9 and 10 . The azo compound 12 on heating fragments predominantly in a concerted manner in contrast to the photolysis. Theoretical methods are applied to unveil structure and bonding in the supposed intermediate diradicals.  相似文献   

19.
The Bi(III) catalysed O-acylative cleavage of cis- and trans-2,5-dimethyltetrahydrofuran 4 with AcCl, BzCl or i-PrCOCl is stereochemically consistent with the operation of a concerted process (ANDN), which proceeds via a stabilised carbocation or ‘loose’ SN2 transition state. However, the O-acylative cleavage of cis-2,5-dimethyltetrahydrofuran 4 with sterically demanding electrophiles such as t-BuCOCl, appears to be stereochemically consistent with the alternative SN1 (DN+AN) pathway. The apparent merging of mechanistic pathways is rationalised by the participation of a strained acyloxy cation.  相似文献   

20.
Ab initio calculations have been carried out for the ground state of H 5 + in order to predict its equilibrium geometry, binding energy, enthalpy of formation, and the features of the H2 · H 3 + interaction at large and intermediate intermolecular distances. The extended basis set of Gaussian functions was carefully optimized to describe the various kinds of intermolecular interactions. Electron correlation was accounted for by means of CI calculations. Different from previous studies we find a D 2d equilibrium geometry with D e = 7.4 kcal/mol and H 300 0 –8.7 kcal/mol. The potential surface turns out to be extremely shallow in the vicinity of the D 2d structure which results in a great mobility of the central nucleus at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号