首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5–7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.  相似文献   

2.
Studies have been performed to characterize laser induced breakdown spectroscopy (LIBS) plasmas formed in Ar/H2 gas mixtures that are used for hydride generation (HG) LIBS measurements of arsenic (As), antimony (Sb) and selenium (Se) hydrides. The plasma electron density and plasma excitation temperature have been determined through hydrogen, argon and arsenic emission measurements. The electron density ranges from 4.5 × 1017 to 8.3 × 1015 cm?3 over time delays of 0.2 to 15 μs. The plasma temperatures range from 8800 to 7700 K for Ar and from 8800 to 6500 K for As in the HG LIBS plasmas. Evaluation of the plasma properties leads to the conclusion that partial local thermodynamic equilibrium conditions are present in the HG LIBS plasmas. Comparison measurements in LIBS plasmas formed in Ar gas only indicate that the temperatures are similar in both plasmas. However it is also observed that the electron density is higher in the Ar only plasmas and that the emission intensities of Ar are higher and decay more slowly in the Ar only plasmas. These differences are attributed to the presence of H2 which has a higher thermal conductivity and provides additional dissociation, excitation and ionization processes in the HG LIBS plasma environment. Based on the observed results, it is anticipated that changes to the HG conditions that change the amount of H2 in the plasma will have a significant effect on analyte emission in the HG LIBS plasmas that is independent of changes in the HG efficiency. The HG LIBS plasmas have been evaluated for measurements of elements hydrides using a constant set of HG LIBS plasma conditions. Linear responses are observed and limits of detection of 0.7, 0.2 and 0.6 mg/L are reported for As, Sb and Se, respectively.  相似文献   

3.
Laser-induced breakdown spectroscopy (LIBS) along with multivariate analysis was used to differentiate between the total carbon (C), inorganic C, and organic C in a set of 58 different soils from 5 soil orders. A 532 nm laser with 45 mJ of laser power was used to excite the 58 samples of soil and the emission of all the elements present in the soil samples was recorded in a single spectrum with a wide wavelength range of 200–800 nm. The results were compared to the laboratory standard technique, e.g., combustion on a LECO-CN analyzer, to determine the true values for total C, inorganic C, and organic C concentrations. Our objectives were: 1) to determine the characteristic spectra of soils containing different amounts of organic and inorganic C, and 2) to examine the viability of this technique for differentiating between soils that contain predominantly organic and/or inorganic C content for a range of diverse soils. Previous work has shown that LIBS is an accurate and reliable approach to measuring total carbon content of soils, but it remains uncertain whether inorganic and organic forms of carbon can be separated using this approach. Total C and inorganic C exhibited correlation with rock-forming elements such as Al, Si, Fe, Ti, Ca, and Sr, while organic C exhibited minor correlation with these elements and a major correlation with Mg. We calculated a figure of merit (Mg/Ca) based on our results to enable differentiation between inorganic versus organic C. We obtained the LIBS validation prediction for total, inorganic, and organic C to have a coefficient of regression, r2 = 0.91, 0.87, and 0.91 respectively. These examples demonstrate an advance in LIBS-based techniques to distinguish between organic and inorganic C using the full wavelength spectra.  相似文献   

4.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

5.
Laser-induced breakdown spectroscopy (LIBS) in the single-pulse or orthogonal double-pulse configuration was performed for the measurement of the concentration of chlorine, which induces the occurrence of stress corrosion cracking (SCC), attached to stainless-steel (UNS S30403). The chlorine spectra were measured for samples sprayed with synthetic seawater with chlorine concentrations from 0.1 to 1.0 g/m2. The chlorine emission intensity decreased between chlorine concentrations of 0.4 and 1.0 g/m2 as determined in the single-pulse measurement. The chlorine concentration dependence of the chlorine emission intensity in the single-pulse configuration was unchanged even when the laser energy was set between 30 and 100 mJ. On the other hand, the chlorine emission intensity increased linearly versus chlorine concentration from 0.1 to 1.0 g/m2 with the orthogonal double-pulse configuration. The results suggest that LIBS is promising for the inspection of the environmental condition for SCC initiation, which can occur when the chlorine concentration is greater than or equal to 0.8 g/m2.  相似文献   

6.
In this work, the possibility of using Laser-Induced Breakdown Spectrometry (LIBS) combined with liquid–liquid microextraction techniques is evaluated as a simple and fast method for trace elemental analysis. Two different strategies for LIBS analysis of manganese contained in microdroplets of extraction solvent (Triton X-114) are studied: (i) analysis by direct laser irradiation of microdroplets; and (ii) analysis by laser irradiation of microdroplets dried on metallic substrates (surface-enhanced LIBS — SENLIBS). Experiments were carried out using synthetic samples with different concentrations of manganese in a 10% w/w Triton X-114 matrix. The analysis by direct laser irradiation of microdroplets showed low precision, sensitivity and poor linearity across the concentration range evaluated (R2 < 0.95). On the other hand, the SENLIBS method of analysis improved the sensitivity, the precision and the linearity of the calibration curve with respect to the direct analysis of microdroplets. In comparison with experimental results obtained by direct analysis, SENLIBS also allowed several replicate measurements to be carried out in a single microdroplet. The limit of detection obtained was 6 μg g 1 of Mn.  相似文献   

7.
Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2–8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.  相似文献   

8.
Mercury is a toxic element found throughout the environment. Elevated concentrations of mercury in soils are quite hazardous to plants growing in these soils and also the runoff of soils to nearby water bodies contaminates the water, endangering the flora and fauna of that region. This makes continuous monitoring of mercury very essential. This work compares two potential spectroscopic methods (laser induced breakdown spectroscopy (LIBS) and spark induced breakdown spectroscopy (SIBS)) at their optimum experimental conditions for mercury monitoring. For LIBS, pellets were prepared from soil samples of known concentration for generating a calibration curve while for SIBS, soil samples of known concentration were used in the powder form. The limits of detection (LODs) of Hg in soil were calculated from the Hg calibration curves. The LOD for mercury in soil calculated using LIBS and SIBS is 483 ppm and 20 ppm, respectively. The detection range for LIBS and SIBS is discussed.  相似文献   

9.
In this paper, large-scale, single-crystalline ZnO nanotube arrays were directly fabricated onto F-doped SnO2 (TCO) glass substrate via an electrochemical deposition method from an aqueous solution for the first time. The tubes had a preferential orientation along the [0 0 0 1] direction and hexagon-shaped cross sections. The novel nanostructure could be easily fabricated without a prepared layer of seeds on the substrate. The surface condition of substrate material and the experimental conditions played a key role in the nanotube formation. A possible formation mechanism has been proposed.  相似文献   

10.
Two-dimensional mapping of the laser-induced breakdown spectroscopy (LIBS) signal of chemical species information in liquefied petroleum gas (LPG) and electrolytic oxy-hydrogen (EOH) flames was performed with in situ flame diagnostics. Base LIBS signals averaged from measurements at wavelengths of 320 nm to 350 nm describe the density information of a flame. The CN LIBS signal provides the concentration of fuel, while the H/O signal represents the fuel/air equivalence ratio. Here, we demonstrate the meaningful use of two-dimensional LIBS mappings to provide key combustion information, such as density, fuel concentration, and fuel/air equivalence ratio.  相似文献   

11.
We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature TS  500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with TS. The size and brightness of expanding plumes increase at higher TS while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with TS. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to TS = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes.  相似文献   

12.
This paper reports the first application of laser-induced breakdown spectroscopy technique (LIBS) to the determination of deuterium/hydrogen numeric ratio (β) in the headspace gases, essentially HD + H2, that are generated by the hydrolysis of NaBD4–NaBH4 mixtures (molar fraction of NaBD4, x = 50–100%) in acidic H2O media (0 < pH < 1). The LIBS measurement of β can be easily achieved with a coefficient of variation better than 5% (over four replicates). The value of β allowed the calculation of the molar fraction of NaBD4, xLIBS, with a coefficient of variation better than 2.5%. The comparison of x vs. xLIBS gives results that are in good agreement, within an average deviation of 3%, for x in the range of 50–100%. The best performances are obtained for β close to unit, which makes LIBS perfectly suited for the detection of H–D exchange taking place during aqueous hydrolysis of NaBD4 or NaBH4.  相似文献   

13.
The influence of the negative substrate bias on the interfacial and microstructural characteristics of nanocrystalline silicon (nc-Si) thin films was deposited by hot wire chemical vapor deposition (HWCVD). Structural characterization of nc-Si films was performed by small angle X-ray diffraction (SAXRD), Raman spectroscopy, X-ray reflectivity (XRR) and field emission scanning electron microscopy (FESEM). Crystalline fraction and crystallite size increases from 61.31 to 74.13% and 13.3 to 21.6 nm, respectively, with an increasing negative bias from 0 to ?200 V. Furthermore, the deposition rate of nc-Si films increases from 25 to 68 nm/min by increase of negative substrate bias from 0 to ?200 V.  相似文献   

14.
Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.  相似文献   

15.
We present our results from the laser induced breakdown spectroscopic studies of 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) investigated using nanosecond and femtosecond pulses. The presence of C, CN peaks in the spectra, signatures of high energy materials, was confirmed and persistence of emissions has been measured. Some of the Nitrogen peaks in fs LIBS spectra were found to be lower in magnitude (after normalization with N 868.60 nm peak) compared to the ns LIBS spectra. The presence of an additional CN peak in the fs spectra was identified for all samples. The ratio of CN peaks (388.28 nm, 387.08 nm, 386.16 nm) to C peak (247.82 nm), recorded with similar fluences, was discovered to be stronger in the fs case. Some of the possible mechanisms ensuing from our studies towards discrimination of such materials are outlined.  相似文献   

16.
Electrochemical techniques are widely used for the fabrication of nanostructured materials, yet a desired high-density nanoparticle arrays remains a challenge. Here large-area and high-density gold nanoparticle arrays with sub-10 nm gaps have been, for the first time, synthesized on Si(1 0 0) substrate within an electrochemical deposition system via the application of an unusually high over-potential. The extremely high over-potential contributes to the relatively small critical island size and high nucleation rate. It is believed that this method can be extended to the electrochemical fabrication nanoparticle arrays of other materials.  相似文献   

17.
Ruthenium(0) composite hydrogenated amorphous carbon nitride (Ru/a-CNx:H) films were deposition on single crystal silicon (1 0 0) substrate by electrochemical deposition technique with acetonitrile as carbon source, and Ru3(CO)12 as dopant. In the deposited progress, the Si (1 0 0) acted as anode. The relative atomic ratio of Ru/N/C was about 0.28/0.33/1, and Ru nanocrystalline particles about 8 nm were homogeneously dispersed into the amorphous carbon matrix. After doping Ru into a-CNx:H films, the conductivity of the films were evidently improved and the resistivity drastically decrease from 108 Ω cm to about 100 Ω cm.  相似文献   

18.
Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3–6 μg m 3). The anions found in the highest average concentrations were SO42  in PM2.5 (2–4 μg m 3) and Cl in TSP (2–6 μg m 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.  相似文献   

19.
A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.  相似文献   

20.
This paper represents the first work on the concentrations of heavy elements, physiochemical characteristics and activity levels of the naturally occurring radionuclides in the Saudi Arabian coastline of the Gulf of Aqaba. Concentrations of 19 heavy elements were measured, namely: Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, V and Zn. The radioactivity levels of 238U, 232Th and 40K were estimated to be: 17 ± 1.7, 22.5 ± 3.7 and 649.6 ± 64.2 Bq kg?1, respectively. The measurements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). In addition, physiochemical characteristics of 19 sediment samples (i.e., saturation percentage, pH, electrical conductivity, organic matter, cation exchange capacity and content of clay, silt and sand) have been determined. Indications for high correlation between most heavy elements are found. The correlation between heavy elements and the radionuclides 238U, 232Th and 40K was generally significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号