首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以2-巯基-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑为原料,经醚化、酰肼化、闭环、硫醚化四步反应合成了10个2-(3,4,5-三甲氧基苯基)-5-[(5-烷硫基-1,3,4-噁二唑-2-基)硫甲基]- 1,3,4-噻二唑类衍生物。通过元素分析、IR、MS、1H NMR和 13C NMR对目标化合物进行了表征。采用In(OTf)3催化下40 oC水相合成目标化合物,具有反应条件温和、合成收率高、催化剂可循环使用等特点。  相似文献   

2.
Some new 1,2,4‐triazolo‐, 1,3,4‐oxadiazolo‐, 1,3,4‐thiadiazol‐, and pyrazolo‐2,4,6‐trimethylphenyl‐1(2H)‐oxo‐phthalazine derivatives were synthesized and identified by IR, 1H NMR, 13C NMR, MS and elemental analysis. The new compounds were synthesized with the objective of studying their antimicrobial activity.  相似文献   

3.
4‐(5‐oxo‐1,2,4‐triazol‐3‐yl)‐sydnones 11 and 4‐(4‐arylamino‐5‐oxo‐1,2,4‐triazol‐3‐yl)‐sydnones 13 have been obtained from a‐chloroformylarylhydrazine hydrochloride 2 . Moreover, the intermediates, including 3, 4 , 9 and 10 , in this study are synthetically informative and valuable. It is also noteworthy that three reactants, 1, 2 and sydnonecarbaldehydes, were prepared from sydnone derivatives and their fragments. The oxidative cyclizations of sydnonecarbaldehyde semicarbazones 9 and carbazones 10 with two different oxidizing agents (Cu(ClO4)2 and Fe(ClO4)3) have been extensively examined. The reaction time and the yields of cyclizations were affected by the substituents of semicarbazones 9 and carbazones 10.  相似文献   

4.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

5.
A series of novel pyrazolyl‐substituted 1,3,4‐oxadiazole derivatives ( 4a‐4o ) were prepared by cyclization of the intermediate N′‐((3‐aryl‐l‐phenyl‐pyrazol‐4‐yl)methylene)arylhydrazide with acetic anhydride. The structures of the new compounds were confirmed by IR, 1H NMR, MS and elemental analysis. Furthermore, preliminary bioassay of some of the title compounds indicated that they exhibited moderate inhibition against HIV‐1 PR.  相似文献   

6.
N‐Glycosyl‐2‐(1,4,5,6‐tetrahydropyridazin‐6‐one‐3‐carbonyl)‐hydrazinecarbothioamides 3a‐3g and N‐glycosyl‐2‐(1,6‐dihydropyridazin‐6‐one‐3‐carbonyl)‐hydrazinecarbothioamides 5a‐5g were prepared by the reaction of glycosyl isothiocyanates with the compounds 1,4,5,6‐tetrahydro‐3‐hydrozinecarbonyl‐6‐pyridazinone ( 1 ) and 1,6‐dihydro‐3‐hydrozinecarbonyl‐6‐pyridazinone ( 2 ). The terminal heterocyclic compounds 1,3,4‐oxadiazole derivatives were obtained from cyclization of compounds ( 3a‐3g ) and ( 5a‐5g ) by mercuric acetate. Their structures were confirmed by IR, 1H NMR, MS and elemental analyses.  相似文献   

7.
A new series of synthesis and biological screening of 2‐(2‐aryl‐4‐methyl‐thiazol‐5‐yl)‐5‐((2‐aryl/benzylthiazol‐4‐yl)methyl)‐1,3,4‐oxadiazole derivatives 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i was achieved by condensation of 2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 2a , 2b , 2c with 4‐methyl‐2‐arylthiazole‐5‐carbaldehyde 3a , 3b , 3c followed by oxidative cyclization of N'‐((4‐methyl‐2‐arylthiazol‐5‐yl)methylene)‐2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i using iodobenzene diacetate as oxidizing agent. All the synthesized compounds were screened for their in vitro antifungal activity against Candida albicans, Candida tropicalis, Aspergillus niger, and Aspergillus flavus. Some of the synthesized compounds showed good antifungal activity.  相似文献   

8.
A series of novel pyrazolyl‐substituted 1,3,4‐thiadiazole derivatives ( 6a‐6d, 7a‐7d, 8a‐8d ) were prepared by cyclization of the intermediate 3‐aryl‐l‐phenyl‐pyrazol‐4‐ylformaldehyde 4′‐phenylthiosemicarbazones with 0.5 M ferric chloride solution. The structures of the new compounds were confirmed by IR, 1H NMR and elemental analysis. Simultaneously, the compounds were detected by fluorescence spectrophotometer and had preferable fluorescence activity.  相似文献   

9.
3‐Arylsydnone‐4‐carbohydroximic acid chlorides ( 1 ) could react with sodium azide to produce the corresponding 3‐arylsydnone‐4‐carbazidoximes ( 2 ), but not 1‐hydroxytetrazoles 3 . Treatment of 3‐arylsydnone‐4‐carbazidoximes ( 2 ) with acid chlorides such as acetyl chloride ( 4a ), propionyl chloride ( 4b ) and benzoyl chloride ( 4c ) in the presence of excess triethylamine generated the derivatives of the azidoximes 5 . To obtain the desired tetrazoles, the azidoximes 2 should first cyclize directly with acetyl chloride ( 4a ) or propionyl chloride ( 4b ) to afford the acetyl or propionyl derivatives 6 . The cyclized tetrazole derivatives 6 underwent deacylation upon heating in ethanol to give 1‐hydroxy‐5‐(3‐arylsydnon‐4‐yl)tetrazoles ( 3 ).  相似文献   

10.
Several 3‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐6‐substituted‐1,3,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazoles have been synthesized and the structures of these compounds were established by elemental analysis, MS, IR and 1H NMR spectral data.  相似文献   

11.
The condensation of 4‐amino‐5‐mercapto‐3‐(2‐phenylquinolin‐4‐yl)/3‐(1‐p‐chlorophenyl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,2,4‐triazoles 1a‐b with chloroacetaldehyde 2a‐b , ω‐bromo‐ω‐(1H‐1,2,4‐triazol‐1‐yl)acetophenone 3a‐b , chloranil 4a‐b , 2‐bromocyclohexanone 5a‐b , 2,4′‐dibromoacetophenone 6a‐b and 2‐bromo‐6′‐methoxy‐2′‐acetonaphthone 7a‐b are described. The structures of the compounds synthesized were confirmed by elemental analyses, IR, 1H NMR and mass spectra. The antibacterial activities were also evaluated.  相似文献   

12.
《Electroanalysis》2006,18(3):291-297
Selected from a series of structurally related heteroaromatic thiols, a newly synthesized reagent 2‐amino‐5‐mercapto‐[1,3,4] triazole (MATZ) was used to fabricate self‐assembled monolayers (SAMs) on gold electrode for the first time. The MATZ/Au SAMs was characterized by electrochemical methods and scanning electronic microscopy (SEM). In 0.04 mol/L Britton–Robinson buffer solution (pH 5), the electrochemical behavior of dopamine showed a quasireversible process at the MATZ/Au SAMs with an electrode kinetic constant 0.1049 cm/s. However, the electrochemical reaction of uric acid at the SAMs electrode showed an irreversible oxidation process, the charge‐transfer kinetics of uric acid was promoted by the SAMs. By Osteryoung square‐wave voltammetry (OSWV), the simultaneous determination of dopamine and uric acid can be accomplished with an oxidation peak separation of 0.24 V, the peak current of dopamine and uric acid were linearly to its concentration in the range of 2.5×10?6–5.0×10?4 mol/L for dopamine and 1×10?6–1×10?4 mol/L for uric acid with a detection limit of 8.0×10?7 mol/L for dopamine and 7.0×10?7 mol/L for uric acid. The MATZ/Au SAMs electrode was used to detect the content of uric acid in real urine and serum sample with satisfactory results.  相似文献   

13.
Eighteen novel 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,3,4‐oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐formhydrazide ( 1 ). All products were identified by spectroscopic analysis, and 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐5‐benzalthio‐1,3,4‐oxadiazole was further validated by X‐ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against E. coli, P. aeruginosa, B. subtilis and S. aureus.  相似文献   

14.
The cyclization of 1‐amino‐2‐mercapto‐5‐[1‐(4‐ethoxyphenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole which was synthesized from p‐ethoxyaniline with various triazole acid in absolute phosphorus oxychloride yields 3,6‐bis(1,2,3‐triazolyl)‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazole derivatives 9a?j , and their structures are established by MS, IR, CHN and 1H NMR spectral data.  相似文献   

15.
《中国化学》2018,36(7):635-638
A convenient and practicable method for the synthesis of the novel 2‐(trifluoromethyl)‐6‐arylimidazo[2,1‐b][1,3,4]‐thiadiazole (bis‐)Mannich base derivatives containing various substitutedpiperazine motif has been developed based on the fused‐heterocycle intermediate. The new structures were identified through melting points, 1H NMR, 13C NMR, 19F NMR, elemental analysis (or HRMS) and X‐ray single‐crystal diffraction. The pesticidal bioassays showed that some of compounds exhibited good fungicidal activities against Cercospora arachidicola, Physalospora piricola and Rhizoctonia cereali at 50 mg/L; some of them displayed favourable insecticidal activities against oriental armyworm (Mythimna separata Walker) at 200 mg/L, particularly, Vk and Vm with mortality rate of 75% and 80% respectively, could be considered as new insecticidal lead compounds for further structural optimization.  相似文献   

16.
A series of novel 3‐((4‐(t‐butyl)‐2‐(2‐benzylidenehydrazinyl)thiazol‐5‐yl)methyl)quinolin‐2(1H)‐ones ( 7a – 7z ) were designed, synthesized and evaluated for their ability of inhibiting neuraminidase (NA) of in?uenza H1N1 virus. Some compounds displayed moderate influenza NA inhibitory activity. Compound 7l with the scaffold of 2‐(2‐(2‐methoxybenzylidene)hydrazinyl)thiazole was the best one, exhibiting moderate NA inhibitory activity with IC50 of 44.66 µmol/L. Structure‐activity relationship showed that compounds with methoxy or hydroxy groups at the ortho position, fluorine and nitro groups at the meta position and chlorine and bromine groups at the para position of phenyl ring were more active. Docking study indicated that compound 7l has important interactions with some key residues (including Asp151, Glu119, Arg292, Tyr406, and Asn347) and binds to 430‐cavity adjacent to NA active site.  相似文献   

17.
Some new (3,5‐aryl/methyl‐1H‐pyrazol‐1‐yl)‐(5‐arylamino‐2H‐1,2,3‐triazol‐4‐yl)methanones were synthesized and characterized by 1HNMR, 13C NMR, MS, IR spectra data and elemental analyses or high resolution mass spectra (HRMS). During the procedure, Dimroth rearrangement was used in this synthesis.  相似文献   

18.
New S(2)- or N(3)-substituted 2-mercapto-5-(4-pyridyl)-1,3,4-oxadiazoles have been obtained and characterized. The direction of substitution depends on the structure of the initial reactants and the reaction conditions. The synthesis of several thiosemicarbazides has been effected from isonicotinic acid hydrazide.  相似文献   

19.
The condensed products 2‐10 of 4‐amino‐5‐mercapto‐3‐(5‐methylisoxazol‐3‐yl)‐l,2,4‐triazole (1) with chloroacetaldehyde, 2‐bromocyclohexanone, chloranil, ωbromo‐ω‐(1H‐1, 2,4‐triazol‐l‐yl)acetophenone, 2‐bromo‐4′‐substituted acetophenones and 2‐bromo‐6′‐methoxy‐2′‐acetonaphthone were described. The antibacterial activities were also evaluated.  相似文献   

20.
5‐Substituted (amine, alkyl, aryl, heterocyclic) 4‐(1,3,4‐thiadiazol‐2‐yl)benzene‐1,3‐ diols were synthesized, and their antifungal properties were examined. The compounds were obtained by the one‐pot reaction of sulfinylbis((2,4‐dihydroxyphenyl)methanethione) with hydrazides or thiosemicarbazides. Their structures were identified from elemental, IR, 1H NMR, and MS spectra analyses. The activities of the derivatives against five phytopathogenic fungi in vitro were measured. Moderate fungicidal effect of the compounds under consideration was found. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:533–540, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20645  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号