首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new natural products, a lignoid glycoside 1 and two dimeric phenylpropanoids 2 and 3 , along with two known lignans 4 and 5 , were isolated from the BuOH‐ and CHCl3‐soluble fractions of the whole plant of Daphne oleoides (Thymelaeaceae). The structures of the new compounds were established by spectroscopic techniques, including 2D NMR, as 4‐(β‐D ‐glucopyranosyloxy)‐9′‐hydroxy‐3,3′,4′‐trimethoxy‐7′,9‐epoxylignan ( 1 ), (1R,2S,5R,6R)‐6‐(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐2‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 2 ) and (1R,2S,5R,6S)‐2,6‐bis(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 3 ). The other lignans were identified as (+)‐pinoresinol O‐(β‐D ‐glucopyranoside) ( 4 ) and (+)‐medioresinol ( 5 ).  相似文献   

2.
Three new isomeric biisoflavonoids, dapholidins A–C ( 1 – 3 , resp.), have been isolated from the AcOEt‐soluble fraction of the MeOH‐soluble extract of the roots of Daphne oleoides, along with the known compounds daphwazirin ( 4 ), daphnetin 8‐Oβ‐D ‐glucopyranoside ( 5 ), daphnin ( 6 ), daphneticin 4″‐Oβ‐D ‐glucopyranoside ( 7 ), and 6,7‐dihydroxy‐3‐methoxy‐8‐[2‐oxo‐2H‐1‐benzopyran‐7‐(Oβ‐D ‐glucopyranosyl)‐8‐yl]‐2H‐1‐benzopyran‐2‐one ( 8 ). The structures of the new compounds were determined by spectroscopic analyses, including 1D‐ and 2D‐NMR.  相似文献   

3.
In this study, the chloroform‐soluble extract of Cuscuta auralis was separated successfully using off‐line two‐dimensional high‐performance countercurrent chromatography, yielding a γ‐pyrone, two alkaloids, a flavonoid, and four lignans. The first‐dimensional countercurrent separation using a methylene chloride/methanol/water (11:6:5, v/v/v) system yielded three subfractions (fractions I–III). The second‐dimensional countercurrent separations, conducted on fractions I–III using n‐hexane/ethyl acetate/methanol/water/acetic acid (5:5:5:5:0, 3:7:3:7:0, and 1:9:1:9:0.01, v/v/v/v/v) systems, gave maltol ( 1 ), (−)‐(13S)‐cuscutamine ( 2 ), (+)‐(13R)‐cuscutamine ( 3 ), (+)‐pinoresinol ( 4 ), (+)‐epipinoresinol ( 5 ), kaempferol ( 6 ), piperitol ( 7 ), and (9R)‐hydroxy‐d ‐sesamin ( 8 ). To the best of our knowledge, maltol was identified for the first time in Cuscuta species. Furthermore, this report details the first full assignment of spectroscopic data of two cuscutamine epimers, (−)‐(13S)‐cuscutamine and (+)‐(13R)‐cuscutamine.  相似文献   

4.
Racemic threo‐3‐hydroxy‐2,3‐diphenyl­propionic acid, C15H14O3, (I), crystallizes from ethyl acetate as a conglomerate of separate (+)‐ and (−)‐crystals. The geometries of (I) and its methyl ester are compared. Reduction of (I) gives threo‐1,2‐diphenyl‐1,3‐propane­diol. The synthesis of threo forms of 1,2‐diaryl‐1,3‐propane­diols via 2,3‐diaryl‐3‐hydroxy­propionic acids is discussed.  相似文献   

5.
Three compounds were isolated from the tissue culture cells of Daphne giraldii cullus,their structures were identified as daphneolone(1),S-(+)-1-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-5-phenyl-1-pentanone(2),S-(+)-1-(4-methoxyphenyl)-3- hydroxy-5-phenyl-1-pentanone(3),and among them,2 was a new compound,3 was a novel natural product.  相似文献   

6.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

7.
The synthesis of enantiomerically pure (+)‐ and (−)‐γ‐ionone 3 is reported. The first step in the synthesis is the diastereoisomeric enrichment of 4‐nitrobenzoate derivatives of racemic γ‐ionol 12 . The enantioselective lipase‐mediated kinetic acetylation of γ‐ionol 13b afforded the acetate 14 and the alcohol 15 , which are suitable precursors of the desired products (−)‐ and (+)‐ 3 , respectively. The olfactory evaluation of the γ‐ionone isomers shows a great difference between the two enantiomers both in fragrance response and in detection threshold. The selective reduction of (−)‐ 3 and (+)‐ 3 to the γ‐dihydroionones (−)‐(R)‐ 16 and (+)‐(S)‐ 17 , respectively, allowed us to assign unambiguously the absolute configuration of the γ‐ionones.  相似文献   

8.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

9.
A selective and sensitive ultra‐high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the determination and pharmacokinetic study of (+)‐8‐hydroxypinoresinol‐4’‐O‐β ‐D‐glucopyranoside, prinsepiol‐4‐O‐β‐D‐glucopyranoside, (+)‐pinoresinol‐4,4’‐di‐O‐β‐D‐glucopyranoside, and (−)‐massoniresinol 3α‐O‐β‐D‐glucopyranoside in rat plasma after the oral administration of a Valeriana amurensis extract. The analytes and ethyl 4‐hydroxybenzoate (internal standard) were separated on a Waters ACQUITY UPLC HSS T3 chromatographic column. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using an electrospray ionization source operating in negative ionization mode. The linear ranges (ng/mL) of the standard curves were 0.39–154.00, 0.62–244.70, 0.50–198.60, and 0.34–134.50 for (+)‐8‐hydroxypinoresinol‐4’‐O‐β‐D‐glucopyranoside, prinsepiol‐4‐O‐β‐D‐glucopyranoside, (+)‐pinoresinol‐4,4’‐di‐O‐β‐D‐glucopyranoside, and (−)‐massoniresinol 3α‐O‐β‐D‐glucopyranoside, respectively. The inter‐ and intra‐day precisions were less than 11.0%, the accuracies were between −5.9 and 7.7%, and the extraction recoveries of the four analytes were > 81.2% from rat plasma. The method was successfully applied to a pharmacokinetic study of the four analytes after oral administration of a Valeriana amurensis extract to rats. The developed method has the potential for pharmacokinetic analysis and to provide additional information in the clinical application of Valeriana amurensis.  相似文献   

10.
Two new biflavonoids, 14″‐O‐methyldihydrodaphnodorin B ( 1 ) and 14″‐O‐methyldaphnodorin J ( 2 ), along with 16 known compounds, i.e., dihydrodaphnodorin B ( 3 ), daphnodorin J ( 4 ), 3″‐epidihydrodaphnodorin B ( 5 ), daphnodorin B ( 6 ), neochamaejasmin B ( 7 ), sikokianin B ( 8 ), (?)‐syringaresinol ( 9 ), (?)‐syringaresinol 4‐Oβ‐D ‐glucopyranoside ( 10 ), (+)‐nortrachelogenin ( 11 ), (?)‐lariciresinol ( 12 ), (?)‐pinoresinol ( 13 ), syringin ( 14 ), syringinoside ( 15 ), daphnoretin ( 16 ), phorbol 13‐acetate ( 17 ), and methyl paraben ( 18 ) were isolated from the roots of Diplomorpha canescens (Meisn.) C.A. Meyer . The structures were determined on the basis of spectroscopic data.  相似文献   

11.
《Tetrahedron: Asymmetry》2007,18(10):1245-1253
Nine new amorphane sesquiterpenoids, (+)-7β-hydroxyamorpha-4,11-diene, (−)-9α-hydroxyamorpha-4,7(11)-diene, (−)-3α-hydroxyamorpha-4,7(11)-diene, (−)-3α-acetoxyamorpha-4,7(11)-diene, (−)-amorpha-4,7(11)-dien-3-one, (+)-2,8-epoxyamorpha-4,7(11)-diene, (+)-5,9-epoxyamorpha-3,7(11)-diene, (−)-2α-hydroxyamorpha-4,7(11)-diene and (−)-2β-acetoxyamorpha-4,7(11)-diene, were isolated from the essential oil of the liverwort Marsupella aquatica, collected near Gaschurn/Montafon, Austria. The isolated compounds and their chemical transformations were investigated using enantioselective GC and extensive spectroscopic studies (HRMS, 1H, 13C and 2D NMR). The absolute configuration of most of the isolated compounds were established by conversions to known compounds. In addition, 1H, and 13C NMR data of (−)-myltayl-4-ene are reported for the first time.  相似文献   

12.
Three new compounds, 2‐methoxy‐3,4‐(methylenedioxy)benzophenone ( 1 ), 4‐hydroxy‐2,3‐dimethoxybenzophenone ( 2 ), and 3‐hydroxy‐4,6‐dimethoxy‐9H‐xanthen‐9‐one ( 3 ), besides three known compounds were isolated from the roots of Securidaca inappendiculata. Their structures were established by spectroscopic means and X‐ray crystallographic diffraction analysis. The biogenetic relationships among these six compounds are discussed.  相似文献   

13.
From the methanolic extract of the roots of Acacia confusa Merr. (Leguminosae), (‐)‐2,3‐cis‐3,4‐cis‐4′‐methoxy‐3,3′,4,7,8‐pentahydroxyflavan ( 1 ), (‐)‐2,3‐cis‐3,4‐cis‐3,3′,4,4′,7,8‐hexahydroxyflavan ( 2 ), (‐)‐2,3‐trans‐3′,4′,7,8‐tetrahydroxydihydroflavonol ( 3 ), (+)‐catechin ( 4 ), (‐)‐epicatechin ( 5 ), 3′,4′,7,8‐tetrahydroxyflavonol ( 6 ) together with N‐methyltryptamine ( 7 ) and N,N‐dimethyltryptamine ( 8 ) were isolated, and their structures were established by analysis of their spectroscopic data. Among them, compound 1 was a new flavonoid. Additionally, the results of chromatographic bioassay on lettuce seeds indicated that compounds 7 and 8 exhibited significant phytotoxicity at a concentration lower than 14 mM.  相似文献   

14.
The Echinacea‐derived immunostimulator and HIV‐1 integrase inhibitor (−)‐chicoric acid (=2,3‐bis{[3‐(3,4‐dihydroxyphenyl)‐1‐oxoprop‐2‐enyl]oxy}butanedioic acid; 1a ) was conveniently prepared via a silane‐promoted Pd‐mediated chemoselective hydrogenolysis of its perbenzylated derivative 12a , which was generated from an efficient and reliable carbodiimide‐mediated coupling reaction between the caffeic acid dibenzyl ether derivative 7 and commercially available (+)‐dibenzyl L ‐tartrate ( 9a ). The other naturally occurring dextrorotatory chicoric acid ( 1b ) can be similarly prepared.  相似文献   

15.
The structure of (+)-β-turmerone ((+)- 1a ), a constituent of the rhizomes of Curcuma longa Linn. , and Curcuma xanthorriza, is established as (1′R,6S)-2-methyl-6-(4′-methylenecyclohex-2′-en-1′-yl)hept-2-en-4-one by synthesis of its enantiomer (−)- 1a , and of the corresponding (1′S,6S)-diastereoisomer (+)- 1b as well. In a stereospecific seventeen-step procedure, the monoterpene diols 2a and 2b of well-established configuration are converted into the target compounds (−)- 1a and (+)- 1b , respectively. Moreover, (−)-bisacurol (−)- 3a (II), the enantiomer of another bisabolane sesquiterpene derived from Curcuma xanthorriza, is obtained as a single stereoisomer and shown to be (1′S,6R)-2-methyl-6-(4′-methylenecyclohex-2′-en-1′-yl)hept-2-en-4-ol, the relative configuration at the remaining OH-substituted chiral center C(4) still being unknown.  相似文献   

16.
A concise and efficient base‐induced synthesis of stair‐shaped, 4‐methylthio‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 3 ) has been delineated by the reaction of 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) and methyl 2‐cyano‐3,3‐dimethylthioacrylate in DMSO using powdered KOH as a base at room temperature. Amination of 3 has been achieved by reaction with secondary amine in ethanol at reflux temperature to yield 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐naphtho[1,2‐b]pyran[2,3‐d]oxepine‐3‐carbonitriles ( 4 ). Reaction of 3 with aryl methyl ketone ( 5 ) in DMSO at room temperature using powdered KOH as a base produced stair‐shaped 5‐aryl‐7,8‐dihydro‐1,4‐dioxa‐2,3‐dioxodinaphtho[1,2‐b,d]oxepine ( 6 ) in good yields. However, reaction of 6‐aryl‐2H‐pyran‐2‐one‐3‐carbonitrile ( 8 ) with 3,4‐dihydronaphtho[1,2‐b]oxepin‐5(2H)‐one ( 1 ) did not give similar product, but in lieu 4‐aryl‐5,6‐dihydronaphtho[1,2‐b]oxepino[4,5‐b]pyran‐2‐ylidene)acetonitrile ( 9 ) was isolated and characterized.  相似文献   

17.
The cyclic [2R,S(R)]‐bornane‐10,2‐sulfinamide (−)‐ 2b , an analogue of Oppolzer`s camphor‐derived sultam (−)‐ 2a , was synthesized by reduction of the known N‐alkylidenesulfinamide (+)‐ 1b with NaBH4. The uncatalyzed [4+2] cycloaddition of cyclopentadiene to the methyl ester (−)‐ 3b of the N‐fumaroylsulfinamide, obtained from (−)‐ 2b , proceeds with lower endo and π‐facial selectivity as compared to dienophiles (−)‐ 3a , c . In contrast to these latter, the diastereoselectivity is reversed either in apolar CCl4 or in the presence of TiCl4. This inversion is explained by a competitive C(α)‐si addition on the reactive anti‐s‐trans conformer.  相似文献   

18.
A new phenolic digycoside 1 was produced as stress metabolite in the fresh leaves of Viburnum ichangense (Hemsl.) Rehd ., in response to abiotic stress elicitation by CuCl2. The stress metabolite was characterized as 1‐O‐[α‐L ‐arabinofuranosyl(1→6)‐β‐D ‐glucopyranosyl]‐erythro‐1,2‐bis(4‐hydroxy‐3‐methoxyphenyl)propane‐1,3‐diol ( 1 ). A new flavan dimer, 2,3‐epoxyflavan‐3′,4′,5,7‐tetraol‐(4→8″)‐flavan‐3″,3′′′,4′′′,5′′′,6″‐pentaol ( 2 ), and two known compounds, hovetrichoside A ( 3 ) and asperglaucide ( 4 ), were also isolated. Their structures were established by spectroscopic means.  相似文献   

19.
It is shown in this ‘Part 2’ that heptaleno[1,2‐c]furans 1 react thermally in a Diels–Alder‐type [4+2] cycloaddition at the furan ring with vinylene carbonate (VC), phenylsulfonylallene (PSA), α‐(acetyloxy)acrylonitrile (AAN), and (1Z)‐1,2‐bis(phenylsulfonyl)ethene (ZSE) to yield the corresponding 1,4‐epoxybenzo[d]heptalenes (cf. Schemes 1, 5, 6, and 8). The thermal reaction of 1a and 1b with VC at 130° and 150°, respectively, leads mainly to the 2,3‐endo‐cyclocarbonates 2,3‐endo‐ 2a and ‐ 2b and in minor amounts to the 2,3‐exo‐cyclocarbonates 2,3‐exo‐ 2a and ‐ 2b . In some cases, the (P*)‐ and (M*)‐configured epimers were isolated and characterized (Scheme 1). Base‐catalyzed cleavage of 2,3‐endo‐ 2 gave the corresponding 2,3‐diols 3 , which were further transformed via reductive cleavage of their dimesylates 4 into the benzo[a]heptalenes 5a and 5b , respectively (Scheme 2). In another reaction sequence, the 2,3‐diols 3 were converted into their cyclic carbonothioates 6 , which on treatment with (EtO)3P gave the deoxygenated 1,4‐dihydro‐1,4‐epoxybenzo[d]heptalenes 7 . These were rearranged by acid catalysis into the benzo[a]heptalen‐4‐ols 8a and 8b , respectively (Scheme 2). Cyclocarbonate 2,3‐endo‐ 2b reacted with lithium diisopropylamide (LDA) at ?70° under regioselective ring opening to the 3‐hydroxy‐substituted benzo[d]heptalen‐2‐yl carbamate 2,3‐endo‐ 9b (Scheme 3). The latter was O‐methylated to 2,3‐endo‐(P*)‐ 10b . The further way, to get finally the benzo[a]heptalene 13b with MeO groups in 1,2,3‐position, could not be realized due to the fact that we found no way to cleave the carbamate group of 2,3‐endo‐(P*)‐ 10b without touching its 1,4‐epoxy bridge (Scheme 3). The reaction of 1a with PSA in toluene at 120° was successful, in a way that we found regioisomeric as well as epimeric cycloadducts (Scheme 5). Unfortunately, the attempts to rearrange the products under strong‐base catalysis as it had been shown successfully with other furan–PSA adducts were unsuccessful (Scheme 4). The thermal cycloaddition reaction of 1a and 1b with AAN yielded again regioisomeric and epimeric adducts, which could easily be transformed into the corresponding 2‐ and 3‐oxo products (Scheme 6). Only the latter ones could be rearranged with Ac2O/H2SO4 into the corresponding benzo[a]heptalene‐3,4‐diol diacetates 20a and 20b , respectively, or with trimethylsilyl trifluoromethanesulfonate (TfOSiMe3/Et3N), followed by treatment with NH4Cl/H2O, into the corresponding benzo[a]heptalen‐3,4‐diols 21a and 21b (Scheme 7). The thermal cycloaddition reaction of 1 with ZSE in toluene gave the cycloadducts 2,3‐exo‐ 22a and ‐ 22b as well as 2‐exo,3‐endo‐ 22c in high yields (Scheme 8). All three adducts eliminated, by treatment with base, benzenesulfinic acid and yielded the corresponding 3‐(phenylsulfonyl)‐1,4‐epoxybenzo[d]heptalenes 25 . The latter turned out to be excellent Michael acceptors for H2O2 in basic media (Scheme 9). The Michael adducts lost H2O on treatment with Ac2O in pyridine and gave the 3‐(phenylsulfonyl)benzo[d]heptalen‐2‐ones 28a and 3‐exo‐ 28b , respectively. Rearrangement of these compounds in the presence of Ac2O/AcONa lead to the formation of the corresponding 3‐(phenylsulfonyl)benzo[a]heptalene‐1,2‐diol diacetates 30a and 30b , which on treatment with MeONa/MeI gave the corresponding MeO‐substituted compounds 31a and 31b . The reductive elimination of the PhSO2 group led finally to the 1,2‐dimethoxybenzo[a]heptalenes 32a and 32b . Deprotonation experiments of 32a with t‐BuLi/N,N,N′,N′‐tetramethylethane‐1,2‐diamine (tmeda) and quenching with D2O showed that the most acid C? H bond is H? C(3) (Scheme 9). Some of the new structures were established by X‐ray crystal‐diffraction analyses (cf. Figs. 1, 3, 4, and 5). Moreover, nine of the new benzo[a]heptalenes were resolved on an anal. Chiralcel OD‐H column, and their CD spectra were measured (cf. Figs. 8 and 9). As a result, the 1,2‐dimethoxybenzo[a]heptalenes 32a and 32b showed unexpectedly new Cotton‐effect bands just below 300 nm, which were assigned to chiral exciton coupling between the heptalene and benzo part of the structurally highly twisted compounds. The PhSO2‐substituted benzo[a]heptalenes 30b and 31b showed, in addition, a further pair of Cotton‐effect bands in the range of 275–245 nm, due to chiral exciton coupling of the benzo[a]heptalene chromophore and the phenylsulfonyl chromophore (cf. Fig. 10).  相似文献   

20.
We report a short synthetic route that provides optically active 2‐substituted hexahydro‐1H‐pyrrolizin‐3‐ones in four steps from commercially available Boc (tert‐but(oxy)carbonyl))‐protected proline. Diastereoisomers (−)‐ 11 and (−)‐ 12 were assembled from the proline‐derived aldehyde (−)‐ 8 and ylide 9 via a Wittig reaction and subsequent catalytic hydrogenation (Scheme 3). Cleavage of the Boc protecting group under acidic conditions, followed by intramolecular cyclization, afforded the desired hexahydro‐1H‐pyrrolizinones (−)‐ 1 and (+)‐ 13 . Applying the same protocol to ylide 19 afforded hexahydro‐1H‐pyrrolizinones (−)‐ 25 and (−)‐ 26 (Scheme 5). The absolute configuration of the target compounds was determined by a combination of NMR studies (Figs. 1 and 2) and X‐ray crystallographic analysis (Fig. 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号