首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speleothems represent an important record of the paleoclimate, and more generally past environmental changes thanks to their laminar structure which is related to variations in rainfall and vegetation throughout the seasons and to their elemental as well as structural compositions which are sensitive to climatic and environmental conditions during their growth. Studies of their composition, especially those with spatial resolution, reveal rich information for paleoclimatology. In this paper, we demonstrate that laser-induced breakdown spectroscopy (LIBS) provides a suitable tool for elemental analysis and especially for 2-dimensional elemental mapping of speleothems. Main, minor, as well as trace elements can be analyzed with this technique. The temporal evolution of the induced plasma is first studied in order to determine a suitable detection window for emission spectrum recording following the impact of the laser pulse on the sample. The matrix effect is then evaluated with a scan on the sample surface by measuring the electron density and the temperature of the plasmas at different positions of the analyzed surface. Concentration mapping is performed for minor and trace elements such as Na, Mg, Al, Si, K, Fe and Sr, by measuring relative variations of line emission intensities from these elements. Finally, correlations in concentration among detected elements are determined. Groups of correlated elements can be attributed to different mineralogical phases.  相似文献   

2.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   

3.
We describe a setup for LIBS mapping of nanoparticles and trace metallic elements in biological organ as well as the followed experimental procedure. Mapping was performed for metallic elements such as Gd, Si, Ca and Fe, with a resolution of 100 μm on kidney slices sampled from a mouse 24 h after intravenous injection of a solution of gadolinium-based nanoparticles. An approach for quantifying Gd in the tissue is also presented with a good agreement with measurement performed by ICP-OES. We demonstrate that LIBS offers a simple and robust method to study the distribution of gadolinium-based nanoparticles in biological samples, without any labeling of the nanoparticles. The used bench-top instrumentation is fully compatible with the standard optical microscopy, which shows its large potential use in Biology and Medicine as a tool for complementary observation of trace metallic elements with respect to the classical optical observations which are generally based on the responses of biomolecules or cells.  相似文献   

4.
Using standard brass alloy samples, an approach to reduce the laser-induced breakdown spectroscopy measurement uncertainty was tested and proved. Two important parameters for plasma characterization, the plasma temperature and the electron density, were applied to minimize the signal uncertainties due to uncontrollable experimental parameter variations. Results show that for the pulse-to-pulse analysis, the signal fluctuations can be significantly reduced by utilizing the plasma characteristic information. The major source for the single pulse fluctuations is the redistribution of the characteristic line at different temperatures according to the Boltzmann distribution under LTE. The change of the degree of ionization also contributes to the signal fluctuations. For the multi-pulse analysis, due to the nonlinear relationship between the plasma temperature and the line intensity, it is not applicable to utilize the Boltzmann distribution to reduce the influences of the plasma properties. However, normalization with the combination of the whole spectrum area and the ratio between the ion and atom number density of the same element can further increase the measurement accuracy.  相似文献   

5.
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2–3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.  相似文献   

6.
Laser-induced breakdown spectroscopy was used to determine the elemental composition of a CeO2 composite powder for process control verification during lanthanide borosilicate glass fabrication. Cerium oxide is used as a surrogate for plutonium oxide, which along with other canister contents will be combined with frit to make glass. Laser-induced breakdown spectroscopy data for the composition of the CeO2 batch containing concentrations of Ce, Cr, Si, Fe, Ta, Ni, Zn, Al Mg, Gd, and W were quantitatively determined from laser-induced breakdown spectroscopy spectra of both pellet and powder samples. The results of both forms were compared and it was determined that the pellet data gave slightly better precision than the powder sample.  相似文献   

7.
Laser-induced breakdown spectroscopy (LIBS) is applied for depth profile analysis of different thicknesses of copper foils attached on steel and aluminum substrates. In order to account interfacial effects, depth profile analysis of copper coated on steel is also carried out. Experiments are done at ambient air and at two different wavelengths of 266 and 1064 nm of a Nd:YAG laser with pulse durations of 5 ns. A three-dimensional model of multi-pulse laser ablation is introduced on the base of normal evaporation mechanism and the simulation results are compared with the experiments. A normalized concentration (CN) is introduced for determination of interface position and results are compared with the usually used normalized intensity (IN). The effect of coating thickness on average ablation rate and resolution of depth profiling are examined. There is a correlation coefficient higher than 0.95 between the model and experimental depth profiles based on the CN method. Depth profile analysis on the base of CN method shows a better depth resolution in comparison with IN method .Increase in the layer thickness, leads to a decrease in the ablation rate.  相似文献   

8.
A measurement system for quantitative, remote materials analysis has been realised. It is based on the method of laser-induced breakdown spectroscopy (LIBS), utilising an optical fibre system, both to deliver the laser radiation to the sample specimen and to collect the light emission from the luminous plasma plume. Distances of up to 100 m between the remote location and the apparatus have been demonstrated. All experiments were performed in situ, under standard conditions of air at atmospheric pressure. In particular, quantitative analysis of ferrous specimens has been achieved, detecting traces of the elements Cr, Cu, Mn, Mo, Ni, Si and V, down to relative concentrations of about 200 ppm. This remote analytical technique has been implemented successfully for measurements in the hostile environment of nuclear reactor buildings.  相似文献   

9.
Space and time-resolved studies of laser induced plasmas in air at atmospheric pressure are presented. Photovoltaic solar cells have been used as samples. The second harmonic (532 nm) of a Nd : YAG laser at an irradiance of 18 × 1012 W/cm2 has been used. The precise focus of the beam allows a microanalysis at a 0.02 mm2 surface area working in single-shot mode. The use of an intensified charge-coupled device (CCD) detector has allowed time-resolved studies in both imaging or spectroscopy modes. The two-dimensional capability of the CCD has enabled the study of atomic and ionic species distribution along the plume. Most data have been recorded using single-laser shot experiments. Spectral lines have been assigned to transitions in atomic components of the material under investigation in the neutral or ionic states of the corresponding atoms. Effects of delay in improving spectral resolution and some examples of spectral characterization of species as a function of its decay are shown.  相似文献   

10.
Space and time-resolved studies of laser induced plasmas in air at atmospheric pressure are presented. Photovoltaic solar cells have been used as samples. The second harmonic (532 nm) of a Nd : YAG laser at an irradiance of 18 x 10(12) W/cm(2) has been used. The precise focus of the beam allows a microanalysis at a 0.02 mm(2) surface area working in single-shot mode. The use of an intensified charge-coupled device (CCD) detector has allowed time-resolved studies in both imaging or spectroscopy modes. The two-dimensional capability of the CCD has enabled the study of atomic and ionic species distribution along the plume. Most data have been recorded using single-laser shot experiments. Spectral lines have been assigned to transitions in atomic components of the material under investigation in the neutral or ionic states of the corresponding atoms. Effects of delay in improving spectral resolution and some examples of spectral characterization of species as a function of its decay are shown.  相似文献   

11.
Depth-profiling of a thermal barrier coating (TBC) system was carried out using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). The TBC system consisted of an outer 7% yttria stabilized zirconia (7YSZ) ceramic coating and an inner Pt-modified bond coat on a Ni-based superalloy single crystal substrate. In the absence of the ceramic layer, it was possible to qualitatively differentiate between the bond coat and the substrate, and also between the two layers of the bond coat. The spatial location of the interface between the two bond coat layers could also be obtained accurately from the spectral profile of W. In presence of the ceramic coating, it was also possible to easily and accurately determine the ceramic/bond coat interface from the spectral profile of Al. Potential use of fs-LIBS in combination with fs laser machining to produce superior quality cooling holes on thermal barrier coated superalloy components is discussed.  相似文献   

12.
Soil bacteria are sensitive to ecological change and can be assessed to gauge anthropogenic influences and ecosystem health. In recent years, there has been a significant increase in the focus on new technologies that can be applied to the evaluation of soil quality. Laser-induced breakdown spectroscopy (LIBS) is a promising technique that has been used for the investigation and characterization of explosives, solids, liquids, gases, biological and environmental samples. In this study, bacteria from un-mined and a chronosequence of reclaimed bauxite soils were isolated on Luria–Bertani agar media. Polymerase chain reaction amplification of the bacterial 16S rDNA, sequencing, and phylogenetic analysis were applied to each isolated soil bacteria from the sample sites resulting in the identification and classification of the organisms. Femtosecond LIBS performed on the isolated bacteria showed atomic and ionic emission lines in the spectrum containing inorganic elements such as sodium (Na), magnesium (Mg), potassium (K), zinc (Zn), and calcium (Ca). Principal component analysis and partial least squares regression analysis were performed on the acquired bacterial spectra demonstrating that LIBS has the potential to differentiate and discriminate among bacteria in the un-mined and reclaimed chronosequence of bauxite soils.  相似文献   

13.
The simplicity of the sample preparation and the use of an internal standardization method for the quantitative analysis of Ca has been investigated. The experimental set-up allowed the measurement of the intensity of ionic emission lines from Ca(II) and Ba(II), as a function of the composition in the matrix sample. The intensity ratios of the emission of Ca(II) to three different lines of Ba(II) were measured as a function of the distance (time) from the ablation point. With this information, the best experimental conditions for the analysis were determined. The method was then applied to the quantitative analysis of Ca in soils and baby food and the results compared with those obtained with conventional chemical and atomic absorption analysis.  相似文献   

14.
We have performed spectroscopic analysis of the plasma generated by Nd:YAG laser irradiation of flesh and skin of fresh potatoes. From the spectra recorded with an Echelle spectrometer 11 minor elements have been identified. Their relative concentrations were estimated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. According the moderate plasma temperature of about 6500 K at the time of spectroscopic observation, the electrons are essentially generated by the ionization of the minor metal atoms, making plasma modeling possible although the organic elements may be out of equilibrium. Among the spectral lines selected for the analysis, the Na I 588.99 and 589.59 nm doublet was found to be partially self-absorbed allowing us to estimate the number density of sodium atoms. The value was found to agree with the number density predicted by the plasma model. As a result, the relative concentrations of the detected minor elements have been estimated for both the flesh and skin of the potatoes. Among these, aluminum and silicon were found to have relatively large mass fractions in the potato skin whereas their presence was not detected in the flesh. The present study shows that laser-induced breakdown spectroscopy is a promising tool to measure the elemental composition of fresh vegetables without any sample preparation.  相似文献   

15.
The paper describes past and present efforts in modeling of laser-induced plasma and overviews plasma diagnostics carried out by pump-probe techniques. Besides general information on existing plasma models, the emphasis is given to models relevant to spectrochemical analysis, i.e. models of radiating plasma. Special attention is paid to collisional-radiative (CR) and collisional-dominated (CD) plasma models where radiative processes play an important role. Also, calibration-free (CF) models are considered which may endow with the possibility for standardless spectroscopic analysis. In the diagnostic part, only methods based on the use of additional diagnostic tools (auxiliary lasers, optics, and probes) are described omitting those based on plasma own radiation. A short review is provided on image-based diagnostics (shadowgraphy, schlieren, and interferometry), absorption and fluorescence, Langmuir probe, and less frequently used cavity ringdown and Thomson scattering methods.  相似文献   

16.
In this work, the Calibration-Free approach for Laser-Induced Breakdown Spectroscopy (CF-LIBS) was applied for the first time to radially resolved spectra emitted by a laser-induced plasma. The radial profiles of plasma temperature and electron number density were used to calculate the local relative concentration of the elements of interest. We analyzed a set of profiles of the local spectral emission coefficient obtained previously by means of spatial deconvolution of the spectra from a copper-based alloy (Cu 93, Fe 5, Mn 1, Ni 1 wt.%) laser-induced plasma. A spatially integrated spectrum of the same plasma was also analyzed for comparison purpose. The relative abundance of the minor components Fe, Mn and Ni was calculated. The results obtained from the central region of the plasma were closer to the nominal concentrations than those obtained from the spatially integrated spectrum. However, an increasing deviation was observed towards the plasma edge. It is proposed that this deviation could be the result of a gradual departure from Local Thermodynamic Equilibrium (LTE) conditions due the significant decrease of the electron density at the external shells of the plasma.  相似文献   

17.
The composition of the line and band spectra of the plasma induced by a femtosecond laser pulse on the surface of sea water is determined. The temporal behaviors of the intensity of the continuum and the Ca II, Mg II and Na I lines are investigated. It is shown that the time dependence of the intensity of the Na I line is described by a monoexponential function. The characteristic decay times of the line intensities of Mg II and Na I were used to estimate the three-body recombination times. Using these values, we estimate the electron number density and the feasibility of Local Thermodynamic Equilibrium (LTE) criterion. A method involving excitation rate constants is proposed for the comparison of detection limits. For a plasma generated on a liquid surface, the following relation among detection limits will be obtained: LOD(Na) < LOD(K) < LOD(Ca) < LOD(Al) < LOD(Mg) < LOD(Zn).  相似文献   

18.
A statistical analysis of single-shot spectral data is reported for laser-induced breakdown spectroscopy (LIBS). Fluctuations in both atomic emission and plasma continuum emission are investigated in concert for a homogenous gaseous flow, and fluctuations in plasma temperature are reported based on iron atomic emission in an aerosol-seeded flow. Threshold irradiance for plasma initiation and plasma absorption were investigated for pure gaseous and aerosol streams, with detailed statistical measurements performed as a function of pulse energy in the breakdown regime. The ratio of the analyte atomic emission intensity to the continuum emission intensity (peak/base) provided a robust signal for single-shot LIBS analysis. Moreover, at optimal temporal delay, the precision of the LIBS signal was maximized for pulse energies within the saturation regime with respect to plasma absorption of incident energy. Finally, single-shot temperature measurements were analyzed, leading to the conclusion that spatial variations in the plasma volume formation and subsequent plasma emission collection, play important roles in the overall shot-to-shot precision of the LIBS technique for gaseous and aerosol analysis.  相似文献   

19.
The influence of laser pulse duration on laser-induced breakdown spectroscopy (LIBS) calibration curves is investigated in the present work. Two Nd:YAG lasers providing pulses of 35 ps and 5 ns, respectively, both operating at 1064 nm, have been used to create plasmas on aluminium, manganese, iron, and silicon targets and on prepared stoichiometric samples of these metals in a matrix. The time-resolved, space-averaged plasma temperatures have been deduced using Boltzmann plots, while the electron number density has been determined from the broadening of spectral lines. The effect of laser pulse duration on the plasma characteristics is discussed, and comparisons are made with previously reported data measured under similar experimental conditions. The optimum experimental conditions (i.e., time delay, gate width, laser energy) have been determined for reliable use of LIBS for quantitative analysis for both pulse durations. For each of the metals of interest, calibration curves have been constructed for concentrations ranging up to 2%.  相似文献   

20.
Space-, time- and spectrally resolved optical diagnostics of laser ablation plasma has provided the opportunity to realize calibration-free analyses of solid materials. In general, this variant of optical emission spectroscopy of pulsed plasma allows the plasma matrix effects to be overcome, yielding satisfactorily precise and accurate quantitative results on elemental composition of materials without using calibration curves, certified reference materials, and internal standards. Such analysis is very close to be nondestructive due to the minimum possible ablated mass, a feature which is very important in many applications, especially for unique museum exhibits and jeweler samples. In this paper, the use of the method for the analysis of elements in bronze, brass and gold alloys, glass samples, and archaeological findings is demonstrated. The results presented confirm the suitability of the approach for routine applications of our instrumentation, while at the same time simplifying the overall analytical procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号