首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organometallic precursor of fac-[99mTc(CO)3(H2O)3]+ has attracted much attention because of the robustness and small size of Tc(I)-tricarbonyl complexes compared to Tc(V) complexes and the good labeling affinity with a variety of donor atoms. Among various ligand systems, an iminodiacetic acid (IDA) was proven as a good chelating group to form a Tc(III)-compelx as well as has been shown its potential as a chelating system for fac-[99mTc(CO)3] precursor. In an attempt to confirm the similarity and the difference between 99mTc(CO)3-IDA and 99mTc-(IDA)2-complex, M(CO)3-IDA (M = 99mTc, Re) complexes of disofenin, mebrofenin and N-(3-iodo-2,4,6-trimethyl phenylcarbamoylmethyl) iminodiacetic acid were prepared, and the biological evaluation of 99mTc(CO)3-disofenin was performed. The 99mTc(CO)3-IDA complexes were prepared with a high radiolabeling yield (>98%) in a quantitative manner and showed a negative charge. The in vivo pharmacokinetic behavior of 99mTc(CO)3-disofenin showed a similar biological activity to 99mTc-(disofenin)2 in that those complexes were quickly cleared from the blood by the hepatocytes and excreted into the gallbladder and intestine. Accordingly, the 99mTc(CO)3-IDA derivatives of disofenin and mebrofenin might be used as hepatobiliary imaging agents. Since an IDA is a promising chelator for 99mTc-based radiopharmaceutical and the biological properties of 99mTc(CO)3-IDA derivative shows similar to that of 99mTc-complex, a biomolecule containing IDA can be freely radiolabeled with fac-[99mTc(CO)3]-precursor or 99mTc. However, the radiolabeling efficiency and the biological behavior demonstrates the favorable properties of 99mTc(CO)3-IDA compound for the development of a new imaging agent.  相似文献   

2.
Summary The organometallic precursor fac-[99mTc(CO)3(H2O)3]+ was reacted with N-ethoxy, N-ethyl dithiocarbamate (NOET) in phosphate buffered saline (pH 7.4) at room temperature for 30 minutes to produce the 99mTc(CO)3-NOET complex. The radiochemical purity (RCP) of the product was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature (RT) was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The biodistribution comparison in mice of the 99mTc(CO)3-NOET complex and the 99mTcN-NOET complex showed that the former had a lower heart and brain uptake as compared to that of the latter, suggesting the incorporation of the [99mTc(CO)3]+ core into the NOET ligand does not improve the biological features as a myocardial imaging agent.  相似文献   

3.
Reported herein is a new concept for the labelling of biomolecules with small [99 mTcO3]+ complexes through a [3+2] cycloaddition with alkenes for radiopharmaceutical applications. We developed convenient reactions for the synthesis of small, water stable fac‐[TcO3(tacn‐R)]+ complexes (99Tc and 99mTc, tacn=1,4,7‐triazacyclononane, R=H, ‐CH2‐C6H5, ‐CH2‐C6H4COOH). With alkenes, these high valent [99mTcO3]+ complexes undergo [3+2] cycloaddition with formation of the corresponding TcV–glycolato complexes. The 99mTcV and 99mTcVII complexes are stable at 37 °C in water and in the presence of serum proteins. Therefore, new opportunities in technetium chemistry are enabled with a high potential for medicinal and biological applications. In contrast to classical labelling, the presented strategy is ligand and not metal‐centred.  相似文献   

4.
The extensive development of radiopharmaceuticals towards early tumour detection and treatment has increased the demand for new ligands with higher tumour selectivity. Research has been done on the potential of the novel O,O′‐diethylethylenediamine‐N,N′‐di‐3‐propanoate ( L ) ligand as a radionuclide vehicle for tumour targeting. Under alkaline conditions, L hydrolyses and produces half ester ligand ( L' ) and diacid ligand ( L'' ), with characteristic donor atom array N,N,O. Ligand L was successfully labelled with 99mTc at pH = 9 by coordination with the octahedral fac‐[99mTc(CO)3(H2O)3]+ intermediate, forming the main radioproduct fac‐[99mTcL′(CO)3] (Tc1). The 99mTc complex showed a low lipophilic character (log P = 0.48) and low binding affinity to human serum albumin (2.51 ± 0.48%). In vitro stability studies in saline and human plasma, as well as challenge studies with cysteine and histidine, revealed high stability of the complex during 24 h. Biodistribution studies of Tc1 in female C57BL/6 mice bearing B16/F1 melanoma metastases showed significant tumour uptake: 9.81 ± 1.19%ID g?1 in the liver, 5.87 ± 0.54%ID g?1 in the lungs and 3.17 ± 0.33%ID g?1 in the ovary at 30 min post‐injection. Favourable physicochemical properties, satisfactory in vitro/in vivo stability and biodistribution profile in the experimental metastatic melanoma model indicate the possible application of the radiolabelled ligand in tumour diagnosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A novel C3′‐functionalized thymidine dithiocarbamate derivative (3’DTC‐TdR) was successfully synthesized and labelled using [99mTcO]3+ core and [99mTc(CO)3(H2O)3]+ core with high yields. The structures of the 99mTc complexes were verified by preparation and characterization of the corresponding stable rhenium complexes. Both of the complexes were lipophilic and stable in vitro. Cell internalization experiments indicated that the uptakes of 99mTcO‐3’DTC‐TdR were related to nucleoside transporters. Biodistribution of these complexes in mice bearing tumor showed that they had high tumor uptakes, good tumor/muscle ratios and tumor/blood ratios. Especially for 99mTcO‐3’DTC‐TdR, it exhibited the highest tumor/muscle ratio and tumor/blood ratio at 4 h post‐injection. SPECT/CT imaging studies indicated clear accumulation in tumor, suggesting 99mTcO‐3’DTC‐TdR would be a promising candidate for tumor imaging.  相似文献   

6.
Seven discrete sugar‐pendant diamines were complexed to the {M(CO)3}+ (99mTc/Re) core: 1,3‐diamino‐2‐propyl β‐D ‐glucopyranoside ( L 1 ), 1,3‐diamino‐2‐propyl β‐D ‐xylopyranoside ( L 2 ), 1,3‐diamino‐2‐propyl α‐D ‐mannopyranoside ( L 3 ), 1,3‐diamino‐2‐propyl α‐D ‐galactopyranoside ( L 4 ), 1,3‐diamino‐2‐propyl β‐D ‐galactopyranoside ( L 5 ), 1,3‐diamino‐2‐propyl β‐(α‐D ‐glucopyranosyl‐(1,4)‐D ‐glucopyranoside) ( L 6 ), and bis(aminomethyl)bis[(β‐D ‐glucopyranosyloxy)methyl]methane ( L 7 ). The Re complexes [Re( L 1 – L 7 )(Br)(CO)3] were characterized by 1H and 13C 1D/2D NMR spectroscopy which confirmed the pendant nature of the carbohydrate moieties in solution. Additional characterization was provided by IR spectroscopy, elemental analysis, and mass spectrometry. Two analogues, [Re( L 2 )(CO)3Br] and [Re( L 3 )(CO)3Br], were characterized in the solid state by X‐ray crystallography and represent the first reported structures of Re organometallic carbohydrate compounds. Conductivity measurements in H2O established that the complexes exist as [Re( L 1 – L 7 )(H2O)(CO)3]Br in aqueous conditions. Radiolabelling of L 1 – L 7 with [99mTc(H2O)3(CO)3]+ afforded in high yield compounds of identical character to the Re analogues. The radiolabelled compounds were determined to exhibit high in vitro stability towards ligand exchange in the presence of an excess of either cysteine or histidine over a 24 h period.  相似文献   

7.
[99mTc(I)]+ and [99mTc(I)(CO)3]+ complexes with isocyanide exhibit high stability, which makes them suitable platforms to develop novel 99mTc radiopharmaceuticals. To develop novel 99mTc radiotracers for imaging hypoxia, in this study, a novel L ligand (4-nitroimidazole isocyanide derivative) was synthesized and labelled using [99mTc(I)]+ core and [99mTc(I)(CO)3]+ core to produce [99mTc(L)6]+ and [99mTc(CO)3(L)3]+ with high yields. To verify the structure of the 99mTc complexes, corresponding rhenium analogues were synthesized and characterized. Both of the 99mTc complexes were stable and hydrophilic. in vitro cellular uptake results showed they could exhibit good hypoxic selectivity. The evaluation of biodistribution in mice bearing S180 tumors indicated both of them could accumulate in tumor. Between them, [99mTc(L)6]+ exhibited higher tumor uptake and tumor/non-target ratio than [99mTc(CO)3(L)3]+. Further, single photon emission computed tomography (SPECT) imaging studies of [99mTc(L)6]+ indicated an obvious accumulation in tumor and the value of the region-of-interest (ROI) ratio of the uptake for the tumor site to the corresponding non-tumor region was 5.64 ± 0.52. The above results suggested [99mTc(L)6]+ would be a potential tracer for imaging tumor hypoxia.  相似文献   

8.
The confirmation that N-substituted imidodiacetic acids, as small and simple ligand systems containing amines and carboxylic acids, could be coordinated to the tricarbonyl core and form inert complexes with [99mTc (CO)3(H2O)3]+, is demonstrated. The HPLC quality control results of 99mTc-carbonyl tagged IDA molecules, performed by gradient HPLC, have shown that HIDA, EHIDA and p-butyl-IDA form complexes with [99mTc(CO)3(H2O)3]+, with a labeling yield of ~90% for each of 99mTc(CO)3 IDA derivatives. However, the changes in the structure of labeled compounds, e.g., EHIDA, influence the changes in the biological behavior. In comparison with 99mTc-EHIDA, the biliary excretion of 99mTc(CO)3 EHIDA was lower, but the urinary excretion higher. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Isocyanide is a strong coordination ligand that can coordinate with [99mTc(I)(CO)3]+ core and [99mTc(I)]+ core to produce stable 99mTc complexes, therefore developing a 99mTc-labeled isocyanide complex for single-photon emission computed tomography (SPECT) imaging is considered to be of great interest. In order to develop potential tumor imaging agents with satisfied tumor uptake and suitable pharmacokinetic properties in vivo, a novel d -glucosamine isocyanide derivative, 4-isocyano-N-(2,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)butanamide (CN3DG), was synthesized and radiolabeled with [99mTc(I)]+ and [99mTc(CO)3]+ cores to obtain [99mTc(CN3DG)6]+ and [99mTc(CO)3(CN3DG)3]+ in high radiolabeling yields (>95%). Both of the complexes showed good hydrophilicity and great stability in vitro. Cell uptake studies performed in S180 cells demonstrated they were transported into cells by glucose transporters. Biodistribution studies of the two complexes in mice bearing S180 tumor showed they had high tumor uptakes and rapid clearance from muscle and blood so that the tumor/blood and tumor/muscle ratios were high. By comparison, [99mTc(CN3DG)6]+ was superior to [99mTc(CO)3(CN3DG)3]+ in regard to tumor uptake, tumor/blood and tumor/liver ratios. S180 tumors could be seen clearly from the SPECT/CT images with [99mTc(CN3DG)6]+. Considering its favorable properties, [99mTc(CN3DG)6]+ would be a promising tumor imaging agent and needs to be further studied.  相似文献   

10.
Dendrimer polyamidoamine generation five‐folic acid conjugate was synthesesed and radiolabelled with fac‐[99mTc(CO)3(H2O)3]+, its in vitro stability was evaluated further. Both of the labeling yield and radiochemical purity of the G5‐FA‐DTPA‐99mTc(CO)3 conjugate exceeded 95%. More than 95.7% and 93.1% of the conjugate still keeps its original structure in PBS and new‐born calf serum solution respectively.  相似文献   

11.
Mixed ligand fac-tricarbonyl complex of [99mTc(CO)3-DMSA-MIBI] has been prepared starting from the precursor [99mTc(OH2)3(CO)3]+. The complex can be obtained in good yield and purity in a two-step procedure by first attaching meso-2,3-dimercaptosuccinic acid (DMSA, HOOCCH(SH)CH(SH)COOH) with [99mTc(OH2)3(CO)3]+, followed by addition of MIBI [tetrakis-2-methoxyisobutylisonitrile (CH3OC(CH3)2CH2-N≡C) copper(I) tetrafluoroborate] solution. The complex was characterized by TLC and HPLC and was studied by means of octanol-water partition coefficient, electrophoresis, stability in vitro, and normal mice experiment. Biodistribution in mice demonstrated that the complex showed higher myocardial uptake after 0.5-hour p.i. The ratios of heart/liver (%ID/g) in the case of 99mTc(CO)3-DMSA-MIBI was higher (1.88) than that observed in case of 99mTc-MIBI1 (0.93) after 0.5-hour p.i. (P<0.05). Results showed that the complex may be developed to a novel myocardial perfusion-imaging agent.  相似文献   

12.
Conventional 99mTc-radiopharmaceuticals for the detection of tumor hypoxia generally possess a single nitroimidazole moiety. Herein, we report the synthesis and evaluation of a 99mTc-complex with three-nitroimidazole moieties in an attempt to improve hypoxic cell detection. Isocyanide derivative of metronidazole (MetroNC) was synthesized and subsequently radiolabeled with [99mTc(CO)3(H2O)3]+ precursor complex, wherein the three labile water molecules were replaced with MetroNC ligand to form a pseudo-octahedral [99mTc(CO)3(MetroNC)3]+ complex. Analysis of corresponding Re(CO)3-analog prepared in macroscopic scale confirmed the formation of expected complex. Cyclic voltammetric studies of [Re(CO)3(MetroNC)3]+ complex showed no significant change in single-electron reduction potential (SERP) of MetroNC ligand (??0.96 V) upon forming the [Re(CO)3(MetroNC)3]+ complex (??0.90 V). In vitro studies in Chinese hamster ovary (CHO) cells showed three-fold preferential accumulation of [99mTc(CO)3(MetroNC)3]+ complex in hypoxic cells over normoxic cells. Biodistribution studies of [99mTc(CO)3(MetroNC)3]+ complex in Swiss mice bearing fibrosarcoma tumor showed tumor uptake and steady retention till 60 min post injection. Present study constitutes a novel design approach towards development of a 99mTc-radiopharmaceutical for hypoxia imaging application, which could be extended to other potential nitroimidazole ligands.  相似文献   

13.
The labeling of (bio)molecules with metallic radionuclides such as 99mTc demands conjugated, multidentate chelators. However, this is not always necessary since phenyl rings can directly serve as integrated, organometallic ligands. Bis‐arene sandwich complexes are generally prepared by the Fischer–Hafner reaction. In extension of this, we show that [99mTc(η6‐C6R6)2]+‐type complexes are directly accessible from water and [99mTcO4]?, even using arenes incompatible with Fischer–Hafner conditions. To unambiguously confirm the nature of these unprecedented 99mTc complexes, their rhenium homologous have been prepared by substituting naphthalene ligands in [Re(η6‐C10H8)2]+ with the corresponding phenyl groups. The ease with which highly stable [99mTc(η6‐C6R6)2]+ complexes are formed under standard labeling conditions enables a multitude of new potential imaging agents based on commercial pharmaceuticals or lead structures.  相似文献   

14.
This study reports the synthesis, radiolabeling and preliminary biodistribution results of [99mTc(CO)3(MN-TZ-BPA)]+ in tumor-bearing mice. The novel nitroimidazole derivative was successfully synthesized by conjugation of bis(pyridin-2-ylmethyl)amine (BPA) to 2-methyl-5-niroimidazole via “click” reaction. The ligand could be labeled by [99mTc(CO)3]+ core in high yield to get [99mTc(CO)3(MN-TZ-BPA)]+, which was very hydrophilic and was stable at room temperature. Biodistribution studies in tumor-bearing mice showed that [99mTc(CO)3(MN-TZ-BPA)]+ accumulated in the tumor with certain initial uptake while poor retention. The rapid clearance from normal organs with favorable tumor/muscle ratios warrants further research to improve tumor targeting efficacy and pharmacokinetic profile of radiolabeled nitroimidazoles by structural modification.  相似文献   

15.
This work reports the synthesis, radiolabeling and preliminary biodistribution results in tumor-bearing mice of 99mTc(CO)3-labeled pegylated (PEG) 2-nitroimidazoles for tumor hypoxia imaging. The novel 2-nitroimidazole derivatives were successfully synthesized by conjugation of tridendate chelators to 2-nitroimidazole via PEG3 linker. Radiolabeling was performed in high yield with [99mTc(CO)3]+ core to get cationic [99mTc(CO)3(BPA-PEG3-NIM)]+, neutral [99mTc(CO)3(AOPA-PEG3-NIM)] and anionic [99mTc(CO)3(IDA-PEG3-NIM)]? respectively, all of which were hydrophilic and stable at room temperature. Biodistribution studies in tumor-bearing mice showed that 99mTc(CO)3-labeled pegylated 2-nitroimidazoles accumulated in the tumor with low uptake. 99mTc-chelate and charge had significant impact on partition coefficient, radiotracer tumor uptake and pharmacokinetic properties. The results indicate the need for synthetic modification of the parent 2-nitroimidazole derivatives and the 99mTc-chelate with a view to improve the tumor targeting efficacy and in vivo kinetic profiles.  相似文献   

16.
Nitrosylation reactions are rare in the context of low valent Re(I)- and Tc(I)-tricarbonyl complexes so far. We herein describe a method for the conversion of a “M(CO)3-moiety” (M = Re, Tc) into a dicarbonyl-nitrosyl moiety “M(CO)2NO”, the synthesis of important precursor complexes and intermediates and possible applications for this new kind of Re- and Tc-chemistry.The behavior of the complex [ReCl3(CO)2(NO)] in water was studied in detail and compared to that of [ReCl3(CO)3]2−. Contrary to the conversion of [ReCl3(CO)3]2− to the mixed aquo-carbonyl complex [Re(OH2)3(CO)3]+ in water, one chloride remains initially bound to the metal center in the dicarbonyl-nitrosyl complex, making [ReCl(OH2)2(CO)2(NO)]+ the main species for further reactions. In this context, we isolated and characterized the complex [Re(μ3-O)(CO)2(NO)]4. Examples of complexes with different bi- and tridentate ligands based on ReCl3(CO)2(NO)] are discussed.For the development of potential new radiopharmaceuticals we also adapted the nitrosylation technique to the n.c.a. level with 99mTc. [99mTc(OH2)3(CO)3]+ served as starting material to form a 99mTc(CO)2(NO)-core. Labelling reactions with ligands such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were performed, resulting in the complexes [99mTc(IDA)(CO)2(NO)], [99mTc(NTA)(CO)2(NO)] and [99mTc(DTPA)(CO)2(NO)]. In this way, the “nitrosyl-approach” adds a new and challenging synthetic tool to the already established organometallic chemistry of Re- and Tc-tricarbonyl complexes.  相似文献   

17.
A unique example of a hydrogen‐bonded ionic solid with a porosity of 80 %, [Co(H2O)6]3[Co2Au3(d ‐pen‐N,S)6]2 ( 1 ; d ‐H2pen=d ‐penicillamine), composed of [Co(H2O)6]2+ cations and [Co2Au3(d ‐pen‐N,S)6]3? anions, is reported. Solid 1 was kinetically produced and was then transformed stepwise into two more thermodynamically stable solids with lower porosities, [Co(H2O)4][Co(H2O)6]2[Co2Au3(d ‐pen‐N,S)6]2 ( 2 ) and [Co(H2O)4]3[Co2Au3(d ‐pen‐N,S)6]2 ( 3 ), through the coordination of the free carboxylate groups in [Co2Au3(d ‐pen‐N,S)6]3? to CoII centers. Solids 1 – 3 were structurally characterized, and the selective adsorption of small molecules into their pores was investigated.  相似文献   

18.
The over-expression of folate receptors in variety of neoplastic tissues makes radiolabeled folate conjugates potential agents for imaging and therapy of such cancers. With the aim of preparing an imaging agent for targeting folate receptors, folic acid has been conjugated with homocysteine for complexation with [99mTc(CO)3(H2O)3]+ core. The radiolabeled complex of the homocysteine-folate could be obtained in >95% radiochemical yield as observed by HPLC. Stability of complex in saline was studied and challenge studies with histidine and cysteine revealed kinetic stability of the complex. Lipophilicity of the radiolabeled complex (log P) was found to be 0.45. In vitro uptake of 99mTc(CO)3-labeled folic acid derivative was studied in KB cells and inhibition studies were carried out using 3H-folic acid and cold homocysteine–folate conjugate. The in vitro studies indicated loss of binding affinity of the derivative towards folate receptors.  相似文献   

19.
To develop potential new Tc radiopharmaceuticals, a novel compound [99mTc(CO)2(NO)(EHIDA)]0 (EHIDA: 2,6-diethylphenylcarbamoylmethyliminodiacetic acid) has been prepared by reacting [99mTc(CO)3)(EHIDA)] with NOBF4 both in water and acetonitrile. The conversion of [99mTc(CO)3)(EHIDA)] to [99mTc(CO)2(NO)(EHIDA)]0 was supported by TLC, HPLC and eletrophoresis. The radiochemical purity (more than 99%) was proved by TLC and HPLC. The biodistribution in mice demonstrated that [Tc(CO)2(NO)(EHIDA)]0 showed higher uptake in blood, kidney and lung (15 min, blood: 19.24±2.95; kidney: 13.61±3.49; lung: 10.81±1.09.) but a lower uptake in liver (15 min, 5.73±0.74). The slower clearances (120 min, blood: 12.75±1.34; kidney: 13.61±3.49) from blood and kidney were also found. This research describes two methods for the conversion of [99mTc(CO)3]+ into [99mTc(CO)2)(NO)]2+ by using NOBF4 as the source of NO+ both in organic solvent and water. The latter method offers the possibility to introduce the NO-group in high yield in water.  相似文献   

20.
fac(S)-[Rh(aet)3] (aet = 2-aminoethanethiolate) is N3S3 metalloligand which can coordinate to transition metal ions to form S-bridge polynuclear complexes. The reaction was carried out between 99mTcO4Na and fac(S)-[Rh(aet)3] in the presence of SnCl2·2H2O. A complex analogous to [Re{Rh(aet3)}2]3+ is formed.6 A simple method for radiolabeling of fac(S)-[Rh(aet)3] with 99mTc has been developed and radiolabeling efficiency was higher than 99%. Effect of SnCl2·2H2O concentration, electrophoresis, HPLC, UV-Visible absorption spectra and biodistribution studies in rats were performed. Higher uptake by kidneys showed rapid distributions of the labeled fac(S)-[Rh(aet)3]. Liver uptake was significant, stomach, lungs and intestine uptake was high at 4 hours post injection time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号