首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2‐(2‐(1‐(1H‐Indol‐3‐yl)ethylidene)‐hydrazinyl)‐4‐substituted 5‐(aryldiazenyl)thiazoles and 5‐((1‐(1H‐indol‐3‐yl)ethylidene)hydrazono)‐2‐substituted‐4‐phenyl‐4,5‐dihydro‐1,3,4‐thiadiazoles were synthesized via reaction of hydrazonoyl halides and 2‐(1‐(1H‐indol‐3‐yl)ethylidene)hydrazine‐1‐carbothioamide and alkyl 2‐(1‐(1H‐indol‐3‐yl)ethylidene)hydrazine‐1‐carbodithioate in ethanolic triethylamine. Structures of the newly synthesis were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic route whenever possible.  相似文献   

2.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ), 1H‐benzimidazole ( 1c ), 1‐methyl‐1H‐imidazole ( 1d ), and 1‐methyl‐1H‐benzimidazole ( 1f ) with methyl 4‐(bromomethyl)benzoate ( 2 ), symmetrically and nonsymmetrically 4‐(methoxycarbonyl)benzyl‐substituted N‐heterocyclic carbene (NHC) precursors, 3a – 3f , were synthesized. These NHC precursors were then reacted with silver(I) acetate (AgOAc) to yield the NHC–silver acetate complexes (acetato‐κO){1,3‐bis[4‐(methoxycarbonyl)benzyl]imidazol‐2‐ylidene}silver ( 4a ), (acetato‐κO){4,5‐dichloro‐1,3‐bis[4‐(methoxycarbonyl)benzyl]‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4b ), (acetato‐κO){1,3‐bis[4‐(methoxycarbonyl)benzyl]‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl}silver ( 4c ), (acetato‐κO){1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4d ), (acetato‐κO){4,5‐dichloro‐1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐imidazol‐2‐yl}silver ( 4e ), and (acetato‐κO){1‐[4‐(methoxycarbonyl)benzyl]‐3‐methyl‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl}silver ( 4f ), respectively. The three NHC–AgOAc complexes 4a, 4c , and 4d were characterized by single‐crystal X‐ray diffraction. All compounds studied in this work were preliminarily screened for their antimicrobial activities in vitro against Gram‐positive bacteria Staphylococcus aureus, and Gram‐negative bacteria Escherichia coli using the qualitative disk‐diffusion method. All NHC–AgOAc complexes exhibited weak‐to‐medium antibacterial activity with areas of clearance ranging from 4 to 7 mm at the highest amount used, while the NHC precursors showed significantly lower activity. In addition, NHC–AgOAc complexes 4a and 4b , and 4d – 4f exhibited in preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 medium‐to‐high cytotoxicities with IC50 values ranging from 3.3±0.4 to 68.3±1 μM .  相似文献   

3.
7‐(6‐Azauracil‐5‐yl)‐isatin 1 was converted through its thiosemicarbazone 2 to 6‐(6‐azauracil‐5‐yl)‐2,3‐dihydro‐5H‐1,2,4‐triazino[5,6‐b]indol‐3‐thione 3 and through the thiosemicarbazone of appropriate isatinic acid to 2‐(2‐thio‐6‐azauracil‐5‐yl)‐6‐(6‐azauracil‐5‐yl)‐aniline 4. The course of the cyclocondensation of this compound was studied and the reaction was found to proceed in both possible ways, resulting in a mixture of compound 3 and regioisomer 6‐(2‐thio‐6‐azauracil‐5‐yl)‐2,3‐dihydro‐5H‐1,2,4‐triazino[5,6‐b]‐indol‐3‐one 5. Substituted aniline 4 was oxidized to 2,6‐bis‐(6‐azauracil‐5‐yl)‐aniline 7 , which served for the preparation of hydrazone 8 , cyclization of which led to 1‐[2,6‐bis‐(6‐azauracil‐5‐yl)‐phenyl]‐6‐azauracil‐5‐carbonitrile 9. This is the first tricyclic 6‐azauracil with vicinal arrangement of 6‐azauracil rings.  相似文献   

4.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

5.
The 2,3‐dihydro‐7‐methyl‐1H,5H‐pyrido[3,2,1‐ij]quinoline‐1,5‐dione derivatives 9 and 10 were prepared from 3‐(5,7‐dimethoxy‐4‐methyl‐2‐oxo‐2H‐quinolin‐1‐yl)propionitrile ( 6 ). Cyclodehydration of the amide 8 gave 1,2‐dihydro‐7,9‐dimethoxy‐6‐methylpyimido[1,2‐a]quinolin‐3‐one ( 11 ).  相似文献   

6.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

7.
In the article the study of cyclocondensation of 3‐[2‐amino‐3‐(3,5‐dioxo‐2,3,4,5‐tetrahydro[1,2,4]‐triazme‐6‐yl)phenyl]‐2,3‐dihydro‐quinoxalin‐2‐one 5 is described and it was found, that the reaction does not proceed by both possible directions, but only cyclization with the carbonyl group of 6‐azauracile cycle proceeds. The 6‐(3‐oxo‐3,4‐dihydro‐quinoxaline‐2‐yl)‐4H‐2,3‐dihydro[1,2,4]triazino[5,6‐b]indol‐3‐one 6 was formed in this way. This course of cyclocondensation was confirmed by the fact, that the product 6 , mentioned above, is quite different from isomeric compound 7 , prepared unambiguously by condensation of 7‐(6‐azauracile‐5‐yl)isatine 8 with o‐phenylenediamine.  相似文献   

8.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

9.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

10.
The reaction of 2‐(2‐methylaziridin‐1‐yl)‐3‐ureidopyridines 12 with triphenylphosphine, carbon tetra‐chloride, and triethylamine (Appel's conditions) led to the corresponding carbodiimides 13 , which underwent intramolecular cycloaddition reaction with aziridine under the reaction conditions to give the pyridine‐fused heterocycles, 2,3‐dihydro‐1H‐imidazo[2′,3′:2,3]imidazo[4,5‐b]pyridines 16 and 12,13‐dihydro‐5H‐1,3 ‐benzodiazepino [2′,3′:2,3] imidazo[4,5‐b]pyridines 17 .  相似文献   

11.
The syntheses of nine new 5‐iodosalicylic acid‐based 1,3,4‐oxadiazoline derivatives starting from methyl salicylate are described. These compounds are 2‐[4‐acetyl‐5‐methyl‐5‐(3‐nitrophenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6a ), 2‐[4‐acetyl‐5‐methyl‐5‐(4‐nitrophenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6b ), 2‐(4‐acetyl‐5‐methyl‐5‐phenyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl)‐4‐iodophenyl acetate, C19H17IN2O4 ( 6c ), 2‐[4‐acetyl‐5‐(4‐fluorophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate, C19H16FIN2O4 ( 6d ), 2‐[4‐acetyl‐5‐(4‐chlorophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate, C19H16ClIN2O4 ( 6e ), 2‐[4‐acetyl‐5‐(3‐bromophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6f ), 2‐[4‐acetyl‐5‐(4‐bromophenyl)‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6g ), 2‐[4‐acetyl‐5‐methyl‐5‐(4‐methylphenyl)‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6h ) and 2‐[5‐(4‐acetamidophenyl)‐4‐acetyl‐5‐methyl‐4,5‐dihydro‐1,3,4‐oxadiazol‐2‐yl]‐4‐iodophenyl acetate ( 6i ). The compounds were characterized by mass, 1H NMR and 13C NMR spectroscopies. Single‐crystal X‐ray diffraction studies were also carried out for 6c , 6d and 6e . Compounds 6c and 6d are isomorphous, with the 1,3,4‐oxadiazoline ring having an envelope conformation, where the disubstituted C atom is the flap. The packing is determined by C—H…O, C—H…π and I…π interactions. For 6e , the 1,3,4‐oxadiazoline ring is almost planar. In the packing, Cl…π interactions are observed, while the I atom is not involved in short interactions. Compounds 6d , 6e , 6f and 6h show good inhibiting abilities on the human cancer cell lines KB and Hep‐G2, with IC50 values of 0.9–4.5 µM.  相似文献   

12.
The reaction of 1H‐indol‐2,3‐diones with 1,6‐dibromohexane has resulted in the formation of new 1H‐indol‐2,3‐diones‐1,1′‐(1,6‐hexanediyl)bis in quantitative yields. These compounds have been used for the synthesis of novel [3′‐(2,3‐dimethyl‐5‐oxo‐1‐phenyl‐3‐pyrazolin‐4‐yl)spiro[3H‐indol‐3,2′‐thiazolidine]‐2,4′‐dione]‐1,1′‐(1,6‐hexanediyl)bis via bis Schiff's bases, [3‐(2,3‐dimethyl‐5‐oxo‐1‐phenyl‐3‐pyrazolin‐4‐yl) imino‐1H‐indol‐2‐one]‐1,1′‐(1,6‐hexanediyl)bis.  相似文献   

13.
The proline‐catalyzed addition of various aliphatic aldehydes to sterically hindered 2‐aryl‐substituted 3H‐indol‐3‐ones affords 2,2‐disubstituted 2,3‐dihydro‐1H‐indol‐3‐one derivatives with excellent enantioselectivities. In addition, the synthesis of a chiral derivative, (S)‐2‐(2‐bromophenyl)‐2,3‐dihydro‐2‐(2‐hydroxyethyl)‐1H‐indol‐3‐one, which can be used as an intermediate for the preparation of the natural product hinckdentine A was accomplished with a high level of enantioselectivity.  相似文献   

14.
An easy, highly efficient and a new convenient one‐pot, two‐step approach to the synthesis of 3‐(3‐benzyl‐2‐(phenylimino)‐2,3‐dihydrothiazol‐4‐yl)‐6‐methyl‐4‐(2‐oxo‐2‐phenylethoxy)‐3,4‐dihydro‐2H‐pyran‐2‐one is described. These compounds were synthesized from 3‐(3‐benzyl‐2‐(phenylimino)‐2,3‐dihydrothiazol‐4‐yl)‐4‐hydroxy‐6‐methyl‐3,4‐dihydro‐2H‐pyran‐2‐one and α‐bromoketones in good yields. The compounds 4 were synthesized by a multi‐component reaction between 1 , 2 , and 3 and the prominent features of this protocol are mild reaction conditions, operation simplicity, and good to high yields of products.  相似文献   

15.
A new synthetic route to 6‐substituted‐imidazo[4,5‐c]pyridin‐2‐ons from 4‐aminopyridine has been investigated. 4‐Aminopyridine protected as alkyl carbamates were nitrated with dinitrogen pentoxide to the corresponding methyl, i‐propyl and t‐butyl 3‐nitropyridin‐4‐yl carbamates ( 5a‐c ) in 51‐63 % yields. Attempts to substitute these in the 6‐position by the ONSH and the VNS techniques succeeded with butyl‐amine and the t‐butyl carbamate 9 . From the methyl or t‐butyl 3‐nitropyridin‐4‐yl carbamates 5a, 5c 1,3‐dihydro‐2H‐imidazo[4,5‐c]pyridin‐2‐one ( 1 ) was formed in 73 and 39 % yields, respectively. t‐Butyl 6‐N‐butylamin‐3‐aminopyridin‐4‐yl carbamate ( 6 ) gave 6‐butylamino‐1,3‐dihydro‐2H‐imidazo[4,5‐c]‐pyridin‐2‐one (7) in 53 % yield.  相似文献   

16.
Two new sesquiterpenoids and one derivative, lycifuranone A (= (4R)‐4,5‐dihydro‐4‐(3‐hydroxy‐2,6‐dimethylbenzyl)‐5,5‐dimethylfuran‐2(3H)‐one; 1 ), lycifuranone B (= 4,5‐dihydroxy‐3‐methyl‐2‐{[(3R)‐tetrahydro‐2,2‐dimethyl‐5‐oxofuran‐3‐yl]methyl} benzaldehyde; 2 ), and lycifuranone C (= (4R)‐4‐(3,4‐dihydroxy‐6‐{(2S,4R,6S)‐4‐[2‐(4‐hydroxy‐3‐methoxyphenyl)ethyl]‐6‐pentyl[1,3]dioxan‐2‐yl}‐2‐methylbenzyl)‐4,5‐dihydro‐5,5‐dimethylfuran‐2(3H)‐one; 3 ), respectively, have been isolated from the roots of Lycianthes marlipoensis, and their structures were established by spectroscopic methods.  相似文献   

17.
The synthesis and structural properties of two kinds of thiosemicarbazide derivatives ( 2a‐c and 3a‐c ) and one kind of semicarbazide derivatives ( 4a, 4b ) have been described. These compounds were synthesized by treating 2‐(4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl)acetohydrazides ( 1a‐c ) with benzyl isothiocyanate, 3‐florophenyl isothiocyanate and benzylisocyanate, respectively. The synthesis of 4‐amino‐3‐alkyl‐1‐[(4‐alkyl‐5‐mercapto(or 5‐oxo)‐4H‐1,2,4‐triazol‐3‐yl)methyl]‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ones ( 5a‐c, 6a‐c and 7 ) have been performed from the reaction with sodium hydroxide. On the other hand, the acidic treatment of compounds 2b, 3b and 4b has afforded 4‐amino‐3‐(4‐chlorobenzyl)‐1‐[(5‐alkylamino‐1,3,4‐thidazol(or 1,3,4‐oxazol)‐2‐yl)methyl]‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ones ( 8, 9 and 10 ). The condensation of thiosemi(or semi)carbazide derivatives ( 2a‐c, 3c and 4b ) with 4‐chlorophenacylbromide have resulted in the formation of 2‐[4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl]‐N′‐(3,4‐dialkyl‐1,3‐thiazol(or oxazol)‐2(3H)‐yliden]acetohydrazides ( 11a‐c, 12, 13 ), while their condensation with chloroacetic acid has produced 2‐[4‐amino‐3‐alkyl‐5‐oxo‐4,5‐dihydro‐1H‐1,2,4‐triazol‐1‐yl]‐N′‐[3‐(3‐alkyl)]‐4‐oxo‐1,3‐thiazolidin(or oxazolidin)‐2‐yliden}acetohydrazides ( 14, 15 and 16 ). The spectral data and elemental analyses have support the proposed structures.  相似文献   

18.
Synthesis of pyrazolo[1,5‐a]pyrimidines, [1,2,4]triazolo[1,5‐a]pyrimidine, 8,10‐dimethyl‐2‐(5‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐1,2,3‐triazol‐4‐yl)pyrido[2′,3′:3,4]‐pyrazolo[1,5‐a]pyrimidine, benzo[4,5]imidazo[1,2‐a]pyrimidine via heterocyclic amines, and sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one were carried out. Also, synthesis of isoxazoles, and pyrazoles from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐triazole‐4‐yl)prop‐2‐en‐1‐one and hydroxymoyl chlorides and hydrazonoyl halides, respectively, were made. Analogously, (1,2,3‐triazol‐4‐yl)thieno[2,3‐b]pyridine derivatives were obtained from sodium 3‐hydroxy‐1‐(5‐methyl‐1‐phenyl‐1H‐1,2,3‐ triazole‐4‐yl)prop‐2‐en‐1‐one and cyanothioacetamide followed by its reacting with active methylene compounds. In addition to full characterization of all synthesized compounds, they were tested to evaluate their antimicrobial activities, and some compounds showed competitive activities to those of tetracycline, the typical antibacterial drug, and clotrimazole, the typical antifungal drug.  相似文献   

19.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

20.
A simple and efficient process for the synthesis of novel heterocycles starting from thiocarbohydrazide was reported. Reaction of 2‐acetylbenzofuran ( 1 ) and thiocarbohydrazide ( 2 ) in ethanol containing acetic acid produced the corresponding thiocarbohydrazone 3 in 86% yield. Reaction of 3 and isatin ( 4 ) gave N,2‐bis(2‐oxoindolin‐3‐ylidene)hydrazine‐1‐carbothiohydrazine ( 6 ) in 65% yield, rather than the expected product, 3‐[(1‐methyl‐1‐benzofur‐2‐ylmethylidene)amino]‐1‐{[(3Z)‐2‐oxo‐2,3‐dihydro‐1H‐indol‐3‐ylidene]amino}thiourea ( 5 ). Reaction of 2‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazine carbothioamide ( 9 ) and chloroacetic acid or hydrazonoyl chloride 11 in basic medium gave (Z)‐2‐((E)‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazono)thiazolidin‐4‐one ( 10 ) or 2‐((E)‐2‐((3‐(benzofuran‐2‐yl)‐1‐ phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazinyl)‐4‐((E)‐(4‐fluorophenyl)diazenyl)‐5‐methylthiazole ( 12 ) in 62% or 74%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号