首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionalised bicyclic exo‐glycals are readily obtained by base‐catalysed (typically MeONa in MeOH) alkynol cycloisomerisation of ethynylated cyclic saccharides. Thus, base treatment of the phenylethynyl‐ and halogenoethynylated 1‐O‐acetyl‐ribofuranoses 22 – 24 and the 4‐ethynylated 1‐thioglucopyranosides 30 – 33 gave – after deacetylation – selectively the (Z)‐configured exocyclic enol ethers 26 – 28 (84–91%) and 34 – 37 (63–76%), respectively, resulting from a trans‐5‐exo‐dig cyclisation. The ring closure to the trans‐dioxahexahydroindans 34 – 37 is favoured by a concerted intramolecular protonation of the intermediate vinyl anion by the neighbouring HO C(3). Cycloisomerisation of the 6‐O‐acetyl‐4‐(phenylethynyl)‐1‐thio‐α‐D ‐glucopyranoside 39 occurred via the corresponding phenylethynylated allenes to provide the galacto‐configured (Z)‐ and (E)‐cis‐dioxahexahydroindans 40 (30%) and 41 (51%). Surprisingly, the HO C(4) unprotected α‐d‐ galactopyranosyl‐buta‐1,3‐diyne 15 and the β‐D ‐glucopyranosyl‐buta‐1,3‐diyne 51 (and its 2‐bromoethynyl analogue) undergo a 6‐exo‐dig ring closure to the 2,5‐dioxabicyclo[2.2.2]octanes 16 – 19 and 52 / 53 , respectively, the ring closure requiring a boat conformation (B1,4 for 15 , 1,4B for 51 ). Ring strain (anti‐reflex effect) prevents an alkynol cycloisomerisation of 4‐(phenylbuta‐1,3‐diynyl, bromoethynyl, or iodoethynyl)levoglucosan 56 – 59 , and 56 reacted by elimination to the hex‐1‐ene‐3,5‐diyne 59 (82%), while isomerisation of 57 and 58 led to epimeric mixtures of the haloallenes 60 (82%) and 61 (68%).  相似文献   

2.
3.
4.
5.
A simple and efficient protocol for CuI‐catalyzed oxidative homocoupling reaction of terminal alkynes to symmetrical 1,4‐disubstituted 1,3‐diynes was reported. The reaction can be carried out in the open air, using NaOAc as a base in the absence of any other additives. A variety of terminal alkynes were converted to the corresponding 1.3‐diynes in good to excellent yields without any side product formation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Carbene transfer to appropriate substrates is a highly versatile tool for the construction of carbon frameworks with increased functional and structural complexity. In this study, some novel cyclopropane derivatives were synthesized via carbenoid reactions and their further reactivities were investigated. (1E)‐Buta‐1,3‐dien‐1‐yl acetate was reacted with four different diazocarbonyl compounds, ethyl diazoacetate, dimethyl diazomalonate, 1‐diazo‐1‐phenylpropan‐2‐one, and methyl (3E)‐2‐diazo‐4‐phenylbut‐3‐enoate, in the presence of two catalysts. All synthesized substituted cyclopropanes were obtained chemoselectively with respect to less‐hindered C?C bonds. Under the applied conditions, while cyclopropanes 7a and 7d underwent further reactions, cyclopropanes 7b and 7c were stable enough. Cyclopropanes 7a and an additional equivalent of ethyl diazoacetate yielded polyfunctionalized cyclohexenes. Cyclopropanes from methyl (3E)‐2‐diazo‐4‐phenylbut‐3‐enoate yielded polyfunctionalyzed cycloheptadiene isomers by Cope rearrangement.  相似文献   

7.
8.
A comparison of the OH chemical shifts for 1‐mono‐, 4‐mono‐, and 1,4‐diethynylated and 1,4‐buta‐1,3‐diynylated glucopyranoses with those of β‐D ‐glucopyranose ( 1 ) identified characteristic increments for the OH (downfield) shifts of the alkynylated glucopyranoses in (D6)DMSO solution. For ethynylated derivatives, the increments vary from 0.05 ppm for HO C(6) (replacement of HO C(1) by an axial ethynyl group) to 0.5 ppm for HO C(2) (replacement of HO C(1) by an equatorial ethynyl group). The increments for buta‐1,3‐diynylated derivatives are larger, and vary from 0.1 to 0.7 ppm. The influence on the shift for vicinal OH groups is stronger for such a substitution at C(1) rather than at C(4).  相似文献   

9.
The first catalytic asymmetric construction of a spirooxindole scaffold incorporated with a seven‐membered benzodiazepine moiety has been established by a three‐component (isatin, 1,2‐phenylenediamine, cyclohexane‐1,3‐dione) tandem reaction catalyzed by a chiral phosphoric acid. Structurally complex spirobenzodiazepine oxindoles with one quaternary stereogenic center are obtained in high yield with excellent enantioselectivity (up to 99 % yield, enantiomeric ratio>99.5:0.5). This approach takes advantage of organocatalytic asymmetric tandem reactions to efficiently construct the structurally rigid spirobenzodiazepine oxindole architecture with high enantiopurity in a single transformation, which involves a cascade enamine–imine formation/intramolecular Mannich reaction sequence.  相似文献   

10.
11.
12.
A one pot synthesis of 1H‐benzo[g]indoles, tetrahydrobenzo[h]quinolines, and naphtho[1,2‐b]azepines from 2‐alkynyl benzaldehydes and cyclic amino acids is reported. The salient feature of the strategy involves formation of three new bonds (one C? N and two C? C bonds) by a metal‐free decarboxylation/cyclization/one‐carbon ring expansion sequence in one pot.  相似文献   

13.
On irradiation (350 nm) in benzene as solvent, dioxepinone 6 and benzoxepinone 7 afford quantitatively mixtures of two diastereoisomeric head‐to‐head dimers, respectively. In both cases, on contact with SiO2 the minor dimer containing trans‐ring fusions undergoes spontaneous isomerization to the (major) cis‐transoid‐cis diastereoisomer. In contrast, thiopyranone 8 is converted selectively, but in very low yield, to dimer 13 .  相似文献   

14.
The formal [2+2] cycloaddition–retroelectrocyclization (CA–RE) reactions between tetracyanoethylene (TCNE) and strained, electron‐rich dibenzo‐fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta‐1,3‐diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta‐1,3‐diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta‐1,3‐diene products showed that the eight‐membered ring inverts via a boat conformer in a ring‐flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol?1.  相似文献   

15.
16.
1,3,4,6‐Tetraketones typically undergo keto–enol tautomerism forming bis‐enols stabilized by intramolecular hydrogen bonding in two six‐membered rings. However, 1,3,4,6‐tetraketones derived from the terpene ketone camphor and norcamphor exist as isomers with two distinguishable modes of intramolecular hydrogen bonding, namely, the formation of six‐ or seven‐membered rings. The structural requirements for this so far unknown behavior were investigated in detail by synthesis and comparison of structural analogues. Both isomers of such 1,3,4,6‐tetraketones were fully characterized in solution and in the solid state. Intriguingly, they slowly interconvert in solution by means of tautomerism–rotation cascades, as was corroborated by DFT calculations. The influence of temperature and complexation with the transition metals Pd, Rh, and Ir on the interconversion process was investigated.  相似文献   

17.
The reactivity of sulfur dioxide toward variously substituted butadienes was explored in an effort to define the factors affecting the competition between the hetero‐Diels‐Alder and cheletropic additions. At low temperature (<−70°), 1‐alkyl‐substituted 1,3‐dienes 1 that can adopt s‐cis‐conformations add to SO2 in the hetero‐Diels‐Alder mode in the presence of CF3COOH as promoter. In the case of (E)‐1‐ethylidene‐2‐methylidenecyclohexane ((E)‐ 4a ), the [4+2] cycloaddition of SO2 is fast at −90° without acid catalyst. (E)‐1‐(Acyloxy)buta‐1,3‐dienes (E)‐ 1c , (E)‐ 1y , and (E)‐ 1z with AcO, BzO, and naphthalene‐2‐(carbonyloxy) substituents, respectively also undergo the hetero‐Diels‐Alder addition with SO2+CF3COOH at low temperatures, giving a 1 : 10 mixture of the corresponding cis‐ and trans‐6‐(acyloxy)sultines c‐ 2c,y,z and t‐ 2c,y,z , respectively). Above −50°, the sultines undergo complete cycloreversion to the corresponding dienes and SO2, which that add in the cheletropic mode at higher temperature to give the corresponding 2‐substituted sulfolenes (=2,5‐dihydrothiophene 1,1‐dioxides) 3 . The hetero‐Diels‐Alder additions of SO2 follow the Alder endo rule, giving first the 6‐substituted cis‐sultines that equilibrate then with the more stable trans‐isomers. This statement is based on the assumption that the S=O group in the sultine prefers a pseudo‐axial rather than a pseudo‐equatorial position, as predicted by quantum calculations. The most striking observation is that electron‐rich dienes such as 1‐cyclopropyl‐, 1‐phenyl‐, 1‐(4‐methoxyphenyl)‐, 1‐(trimethylsilyl)‐, 1‐phenoxy‐, 1‐(4‐chlorophenoxy)‐, 1‐(4‐methoxyphenoxy)‐, 1‐(4‐nitrophenoxy)‐, 1‐(naphthalen‐2‐yloxy)‐, 1‐(methylthio)‐, 1‐(phenylthio)‐, 1‐[(4‐chlorophenyl)thio]‐, 1‐[(4‐methoxyphenyl)thio]‐, 1‐[(4‐nitrophenyl)thio]‐, and 1‐(phenylseleno)buta‐1,3‐diene, as well as 1‐(methoxymethylidene)‐2‐methylidenecyclohexane ( 4f ) do not equilibrate with the corresponding sultines between −100 and −10°, in the presence of a large excess of SO2, with or without acidic promoter. The hetero‐Diels‐Alder additions of SO2 to 1‐substituted (E)‐buta‐1,3‐dienes are highly regioselective, giving exclusively the corresponding 6‐substituted sultines. The 1‐substituted (Z)‐buta‐1,3‐dienes do not undergo the hetero‐Diels‐Alder additions with sulfur dioxide.  相似文献   

18.
Three tetra‐aryl substituted 1,3‐butadiene derivatives with aggregation enhanced emission (AEE) and mechanochromic fluorescence behavior have been rationally designed and synthesized. The results suggest an effective design strategy for developing diverse materials with aggregation induced emission (AIE) and significant mechanochromic performance by employing D ‐π‐A structures with large dipole moments.  相似文献   

19.
20.
Chloroprene (=2‐chlorobuta‐1,3‐diene; 4b ) and electron‐rich dienes such as 2‐methoxy‐( 4c ), 2‐acetoxy‐( 4d ), and 2‐(phenylseleno)buta‐1,3‐diene ( 4e ) refused to equilibrate with the corresponding sultines 5 or 6 between −80 and −10° in the presence of excess SO2 and an acidic promoter. Isoprene ( 4a ) and 2‐(triethylsilyl)‐( 4f ), 2‐phenyl‐( 4g ), and 2‐(2‐naphthyl)buta‐1,3‐diene ( 4i ) underwent the hetero‐Diels‐Alder additions with SO2 at low temperature. In contrast, 2‐(1‐naphthyl)buta‐1,2‐diene ( 4h ) did not. With dienes 4a, 4g , and 4i , the hetero‐Diels‐Alder additions with SO2 gave the corresponding 4‐substituted sultine 5 with high regioselectivity. In the case of 4g +SO2⇄ 5g , the energy barrier for isomerization of 5g to 5‐phenylsultine ( 6g ) was similar to that of the cheletropic addition of 4g to give 3‐phenylsulfolene ( 7g ). The hetero‐Diels‐Alder addition of 4f gave a 1 : 4 mixture of the 4‐(triethylsilyl)sultine ( 5f ) and 5‐(triethylsilyl)sultine ( 6f ). The preparation of the two new dienes 4h and 4i is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号