首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present numerical results on a two‐dimensional Riemann problem governed by the self‐similar nonlinear wave system that gives rise to a transonic shock. We consider a configuration for a vertical incident shock moving to the right above a rectangular object. The incident shock then interacts with a sonic circle soon after it moves beyond the object, and creates a transonic region. We implement Lax–Liu positive schemes and Strang splitting, and obtain several numerical solutions for the model system. With the numerical results that we have obtained, we present several analyses of the transonic shock strengths and the positions of the transonic shocks with various Riemann data. Moreover, due to the presence of the corner of the object, numerical oscillations are apparent. We discuss regularity results for the solution near the corner of the object. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.

  相似文献   


3.
In this paper we study the stability of transonic shocks in steady supersonic flow past a wedge. We take the potential flow equation as the mathematical model to describe the compressible flow. It is known that in generic case such a problem admits two possible location of shock, connecting the flow ahead it and behind it. They can be distinguished as supersonic-supersonic shock and supersonic-subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine-Hugoniot conditions and entropy condition. In this paper we prove that the transonic shock is also stable under perturbation of the coming flow provided the pressure at infinity is well controlled.  相似文献   

4.
This paper addresses the self-similar transonic irrotational flow in gas dynamics in two space dimensions.We consider a configuration that the incident shock becomes a transonic shock as it enters the sonic circle, interacts with the rarefaction wave downstream, and then becomes sonic. The rarefaction wave further downstream becomes sonic (degenerate) creating an unknown boundary for the governing system. We present the Riemann data for this configuration, provide the characteristic decomposition of the system, and formulate the boundary value problem for this configuration. The numerical results are presented, and a method to establish the existence result is briefly discussed.  相似文献   

5.
We present numerical results on self-similar two-dimensional Riemann problems governed by the compressible Euler system and the nonlinear wave system, which give rise to a transonic shock. We consider a configuration for a vertical incident shock moving to the right above a rectangular object. The incident shock then interacts with a sonic circle soon after it moves beyond the object, and creates a transonic region. We implement Lax–Liu positive schemes and Strang splitting, and obtain linear correlations of the incident shock strength and the shock strength at the vertical wall. We further implement Roe average methods and finite volume methods on quadrilateral grids to capture a contact discontinuity of the Euler system near the corner of the object. The contact discontinuity creates a new supersonic state and a transonic shock inside the transonic region.  相似文献   

6.
We study a two dimensional Riemann problem for the self-similar nonlinear wave system which gives rise to an interaction of a transonic shock and a rarefaction wave. The interesting feature of this problem is that the governing equation changes its type from supersonic in the far field to subsonic near the origin. The subsonic region is then bounded above by the sonic line (degenerate) and below by the transonic shock (free boundary). Furthermore due to the rarefaction wave in the downstream, which interacts with the transonic shock, the problem becomes inhomogeneous and degenerate. We establish the existence result of the global solution to this configuration, and present analysis to understand the solution structure of this problem.  相似文献   

7.
If a plane shock hits a wedge, a self-similar pattern of reflected shocks travels outward as the shock moves forward in time. The nature of the pattern is explored for weak incident shocks (strength b) and small wedge angles 2θw through potential theory, a number of different scalings, some study of mixed equations and matching asymptotics for the different scalings. The self-similar equations are of mixed type. A linearization gives a linear mixed flow valid away from a sonic curve. Near the sonic curve a shock solution is constructed in another scaling except near the zone of interaction between the incident shock and the wall where a special scaling is used. The parameter β = c1θ2w(γ + 1)b ranges from 0 to ∞. Here γ is the polytropic constant and C1 is the sound speed behind the incident shock. For β > 2 regular reflection (weak or strong) can occur and the whole pattern is reconstructed to lowest order in shock strength. For β < 1/2 Mach reflection occurs and the flow behind the reflection is subsonic and can be constructed in principle (with an open elliptic problem) and matched. The case β = 0 can be solved. For 1/2 < β < 2 or even larger β the flow behind a Mach reflection may be transonic and further investigation must be made to determine what happens. The basic pattern of reflection is an almost semi-circular shock issuing, for regular reflection, from the reflection point on the wedge and for Mach reflection, matched with a local interaction flow. Assuming their nature, choosing the least entropy generation, the weak regular reflection will occur for β sufficiently large (von Neumann paradox). An accumulation point of vorticity occurs on the wedge above the leading point. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
We study the stability of transonic shocks in steady supersonic flow past a wedge. It is known that in generic case such a problem admits two possible locations of the shock front, connecting the flow ahead of it and behind it. They can be distinguished as supersonic–supersonic shock and supersonic–subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine–Hugoniot conditions and the entropy condition. We prove that the transonic shock is conditionally stable under perturbation of the upstream flow or perturbation of wedge boundary. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we construct a class of transonic shock in a divergent nozzle which is a part of an angular sector (for two-dimensional case) or a cone (for three-dimensional case) which does not contain the vertex. The state of the compressible flow depends only on the distance from the vertex of the angular sector or the cone. It is supersonic at the entrance, while for appropriately given large pressure at the exit, a transonic shock front appears in the nozzle and the flow becomes subsonic after passing it. The position and strength of the shock is automatically adjusted according to the pressure given at the exit. We demonstrate these phenomena by using the two-dimensional and three-dimensional full steady compressible Euler systems. The idea involved is to solve discontinuous solutions of a class of two-point boundary value problems for systems of ordinary differential equations. Results established in this paper may be used to analyze transonic shocks in general nozzles.  相似文献   

10.
We present the existence of the subsonic solution to a two-dimensional Riemann problem governed by a self-similar nonlinear wave equation where the boundary of the subsonic region consists of a transonic shock and the sonic circle. Thus the governing equation becomes a free boundary problem on the transonic shock and degenerates on the sonic circle. By utilizing the barrier methods and iterative methods, we show the well-posedness of the transonic shock in the entire subsonic region and thus establish the global solution. This result does not rely on any smallness of Riemann data.  相似文献   

11.
We establish the existence and stability of multidimensional transonic shocks (hyperbolic‐elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic‐hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of C1,α flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the C1,α perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is C1,α, provided that the hyperbolic phase is close in C1,α to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is C2,α, the free boundary is C2,α and stable under the steady perturbation. © 2003 Wiley Periodicals Inc.  相似文献   

12.
The shock reflection problem is one of the most important problems in mathematical fluid dynamics, since this problem not only arises in many important physical situations but also is fundamental for the mathematical theory of multidimensional conservation laws that is still largely incomplete. However, most of the fundamental issues for shock reflection have not been understood, including the regularity and transition of different patterns of shock reflection configurations. Therefore, it is important to establish the regularity of solutions to shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, for a regular reflection configuration, the potential flow governs the exact behavior of the solution in C 1,1 across the pseudo-sonic circle even starting from the full Euler flow, that is, both of the nonlinear systems are actually the same in a physically significant region near the pseudo-sonic circle; thus, it becomes essential to understand the optimal regularity of solutions for the potential flow across the pseudo-sonic circle (the transonic boundary from the elliptic to hyperbolic region) and at the point where the pseudo-sonic circle (the degenerate elliptic curve) meets the reflected shock (a free boundary connecting the elliptic to hyperbolic region). In this paper, we study the regularity of solutions to regular shock reflection for potential flow. In particular, we prove that the C 1,1-regularity is optimal for the solution across the pseudo-sonic circle and at the point where the pseudo-sonic circle meets the reflected shock. We also obtain the C 2,α regularity of the solution up to the pseudo-sonic circle in the pseudo-subsonic region. The problem involves two types of transonic flow: one is a continuous transition through the pseudo-sonic circle from the pseudo-supersonic region to the pseudo-subsonic region; the other a jump transition through the transonic shock as a free boundary from another pseudo-supersonic region to the pseudo-subsonic region. The techniques and ideas developed in this paper will be useful to other regularity problems for nonlinear degenerate equations involving similar difficulties.  相似文献   

13.
We study the uniqueness of solutions with a transonic shock in a duct in a class of transonic shock solutions, which are not necessarily small perturbations of the background solution, for steady potential flow. We prove that, for given uniform supersonic upstream flow in a straight duct, there exists a unique uniform pressure at the exit of the duct such that a transonic shock solution exists in the duct, which is unique modulo translation. For any other given uniform pressure at the exit, there exists no transonic shock solution in the duct. This is equivalent to establishing a uniqueness theorem for a free boundary problem of a partial differential equation of second order in a bounded or unbounded duct. The proof is based on the maximum/comparison principle and a judicious choice of special transonic shock solutions as a comparison solution.  相似文献   

14.
In this paper we study the stability of the nonlinear wave structure caused by the attack of an incident shock on an interface of two different kinds of media. The attack will produce a reflected wave and a refracted wave, and also let the interface deflected. In this paper we will mainly study the case, when the reflected wave is a shock, and the flow between the reflected wave and the refracted shock is relatively subsonic. Our result indicates that the wave structure and the flow field for the reflection-refraction problem in this case is conditionally stable.To describe the motion of the fluid we use the inviscid Euler system as the mathematical model. The reflection-refraction problem can be reduced to a free boundary value problem, where the unknown reflected shock and refracted shock are free boundaries, and the deflected interface is also to be determined. In the proof of the existence and the stability of the corresponding wave structure we apply the Lagrange transformation to fix the interface and the decoupling technique to decouple the elliptic-hyperbolic composite system in its principal part. Meanwhile, some efficient weighted Sobolev estimates are established to derive the existence for corresponding nonlinear problems.  相似文献   

15.
In this paper, we present a mathematical analysis of the quasilinear effects arising in a hyperbolic system of partial differential equations modelling blood flow through large compliant vessels. The equations are derived using asymptotic reduction of the incompressible Navier–Stokes equations in narrow, long channels. To guarantee strict hyperbolicity we first derive the estimates on the initial and boundary data which imply strict hyperbolicity in the region of smooth flow. We then prove a general theorem which provides conditions under which an initial–boundary value problem for a quasilinear hyperbolic system admits a smooth solution. Using this result we show that pulsatile flow boundary data always give rise to shock formation (high gradients in the velocity and inner vessel radius). We estimate the time and the location of the first shock formation and show that in a healthy individual, shocks form well outside the physiologically interesting region (2.8m downstream from the inlet boundary). In the end we present a study of the influence of vessel tapering on shock formation. We obtain a surprising result: vessel tapering postpones shock formation. We provide an explanation for why this is the case. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, under certain downstream pressure condition at infinity, we study the globally stable transonic shock problem for the perturbed steady supersonic Euler flow past an infinitely long 2-D wedge with a sharp angle. As described in the book of Courant and Friedrichs [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948] (pages 317-318): when a supersonic flow hits a sharp wedge, it follows from the Rankine-Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the edge of the sharp wedge in terms of the different pressure states in the downstream region, which correspond to the supersonic shock and the transonic shock respectively. It has frequently been stated that the strong shock is unstable and that, therefore, only the weak shock could occur. However, a convincing proof of this instability has apparently never been given. The aim of this paper is to understand this open problem. More concretely, we will establish the global existence and stability of a transonic shock solution for 2-D full Euler system when the downstream pressure at infinity is suitably given. Meanwhile, the asymptotic state of the downstream subsonic solution is determined.  相似文献   

17.
We study the stability of stationary transonic shock fronts under two-dimensional perturbation in gas dynamics. The motion of the gas is described by the full Euler system. The system is hyperbolic ahead of the shock front, and is a hyperbolic-elliptic composed system behind the shock front. The stability of the shock front and the downstream flow under two-dimensional perturbation of the upstream flow can be reduced to a free boundary value problem of the hyperbolic-elliptic composed system. We develop a method to deal with boundary value problems for such systems. The crucial point is to decompose the system to a canonical form, in which the hyperbolic part and the elliptic part are only weakly coupled in their coefficients. By several sophisticated iterative processes we establish the existence and uniqueness of the solution to the described free boundary value problem. Our result indicates the stability of the transonic shock front and the flow field behind the shock.

  相似文献   


18.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

19.
When steady supersonic flow hits a slim wedge, there may appear an oblique transonic shock attached to the vertex of the wedge, if the downstream pressure is rather large. This paper studies stability in certain weighted partial Hölder spaces of the oblique transonic shock attached to the vertex of a wedge, which is against steady supersonic flows, under perturbations of the upstream flow and the profile of the wedge. We show that under reasonable conditions on the upcoming supersonic flow and the slope of the wedge, such transonic shocks are structural stable. Mathematically, we solve an elliptic–hyperbolic mixed type in an unbounded domain, and the flow field is proved to be C1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The problem of shock reflection by a wedge, which the flow is dominated by the unsteady potential flow equation, is a important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. 57 (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint (2003)], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle, which between incident shock and wedge, is small, we can see that weak regular reflection as the disturbance of normal reflection as in [Shuxing Chen, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21 (78) (1996) 1103-1118]. By linearizing the resulted nonlinear equation and boundary conditions with above viewpoint, we obtain a linear degenerate elliptic equation with mixed boundary conditions and a linear degenerate elliptic equation with oblique boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, delicate a priori estimate and compact arguments, we show that the solution of linearized problem with oblique boundary conditions is smooth in the interior and Lipschitz continuous up to the degenerate boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号