首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

2.
This work is an extension of the paper (Proc. R. Soc. London 2005; 461A :1927–1950) to impact oscillators with more than one degree of freedom. Given the complex and even chaotic behaviour of these non‐smooth mechanical systems, it is essential to incorporate their qualitative physical properties, such as the impact law and the frequencies of the systems, into the envisaged numerical methods if the latter is to be reliable. Based on this strategy, we design several non‐standard finite difference schemes. Apart from their excellent error bounds and unconditional stability, the schemes are analysed for their efficiency to preserve some important physical properties of the systems including, among others, the conservation of energy between consecutive impact times, the periodicity of the motion and the boundedness of the solutions. Numerical simulations that support the theory are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Refining the notion of an ideal triangulation of a compact three‐manifold, we provide in this paper a combinatorial presentation of the set of pairs (M,α), where M is a three‐manifold and α is a collection of properly embedded arcs. We also show that certain well‐understood combinatorial moves are sufficient to relate to each other any two refined triangulations representing the same (M,α). Our proof does not assume the Matveev–Piergallini calculus for ideal triangulations, and actually easily implies this calculus. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Beautiful formulas are known for the expected cost of random two‐dimensional assignment problems, but in higher dimensions even the scaling is not known. In three dimensions and above, the problem has natural “Axial” and “Planar” versions, both of which are NP‐hard. For 3‐dimensional Axial random assignment instances of size n, the cost scales as Ω(1/ n), and a main result of the present paper is a linear‐time algorithm that, with high probability, finds a solution of cost O(n–1+o(1)). For 3‐dimensional Planar assignment, the lower bound is Ω(n), and we give a new efficient matching‐based algorithm that with high probability returns a solution with cost O(n log n). © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 160–196, 2015  相似文献   

5.
6.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

7.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

8.
The velocity of an incompressible flow in a bounded three‐dimensional domain is represented by its vorticity with the help of an apparently new representation formula. Using this formula we prove a quasi‐Lipschitz estimate for in dependence of the supremum norm of . Our quasi‐Lipschitz bound extends to the case where is represented by any continuous ≠ rot  相似文献   

9.
In this paper, we establish the local well‐posedness for the two‐component b‐family system in a range of the Besov space. We also derive the blow‐up scenario for strong solutions of the system. In addition, we determine the wave‐breaking mechanism to the two‐component Dullin–Gottwald–Holm system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
An Adini‐Q1P3 finite element method is introduced to solve general elastic multi‐structure problems, where displacements on bodies, longitudinal displacements on plates, longitudinal displacements and rotational angles on rods are discretized by conforming linear (bilinear or trilinear) elements, and transverse displacements on plates and rods are discretized by Adini elements and Hermite elements of third order, respectively. The unique solvability and optimal error estimates in the energy norm are established for the discrete method, whose numerical performance is illustrated by some numerical examples. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1092–1112, 2011  相似文献   

11.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

12.
In this paper, the issue of stability of multi‐group coupled systems on networks with multi‐diffusion (MCSNMs) is mainly analyzed. Utilizing graph theory, a novel and practical method of constructing a proper Lyapunov function for the MCSNMs is presented. Furthermore, based on the graph‐theoretic approach and the proposed Lyapunov function, sufficient criteria, in the term of Lyapunov function and coefficients of the system, respectively, are derived to ensure the stability of the MCSNMs. Apart from accessibility to checking, the proposed results can generalize the corresponding results published in a previous time. Finally, the effectiveness and feasibility of the obtained results are demonstrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
14.
We introduce, characterise and provide a combinatorial interpretation for the so‐called q‐Jacobi–Stirling numbers. This study is motivated by their key role in the (reciprocal) expansion of any power of a second order q‐differential operator having the q‐classical polynomials as eigenfunctions in terms of other even order operators, which we explicitly construct in this work. The results here obtained can be viewed as the q‐version of those given by Everitt et al. and by the first author, whilst the combinatorics of this new set of numbers is a q‐version of the Jacobi–Stirling numbers given by Gelineau and the second author.  相似文献   

15.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

16.
Ebola virus disease (EVD) can rapidly cause death to animals and people, for less than 1month. In addition, EVD can emerge in one region and spread to its neighbors in unprecedented durations. Such cases were reported in Guinea, Sierra Leone, and Liberia. Thus, by blocking free travelers, traders, and transporters, EVD has had also impacts on economies of those countries. In order to find effective strategies that aim to increase public knowledge about EVD and access to possible treatment while restricting movements of people coming from regions at high risk of infection, we analyze three different optimal control approaches associated with awareness campaigns, treatment, and travel‐blocking operations that health policy‐makers could follow in the war on EVD. Our study is based on the application of Pontryagin's maximum principle, in a multi‐regional epidemic model we devise here for controlling the spread of EVD. The model is in the form of multi‐differential systems that describe dynamics of susceptible, infected, and removed populations belonging to p different geographical domains with three control functions incorporated. The forward–backward sweep method with integrated progressive‐regressive Runge–Kutta fourth‐order schemes is followed for resolving the multi‐points boundary value problems obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A graph is YΔY‐reducible if it can be reduced to a vertex by a sequence of series‐parallel reductions and YΔY‐transformations. Terminals are distinguished vertices, that cannot be deleted by reductions and transformations. In this article, we show that four‐terminal planar graphs are YΔY‐reducible when at least three of the vertices lie on the same face. Using this result, we characterize YΔY‐reducible projective‐planar graphs. We also consider terminals in projective‐planar graphs, and establish that graphs of crossing‐number one are YΔY‐reducible. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 83–93, 2000  相似文献   

18.
In this article, we consider the Hamilton‐Waterloo problem for the case of Hamilton cycles and triangle‐factors when the order of the complete graph Kn is even. We completely solved the problem for the case n≡24 (mod 36). For the cases n≡0 (mod 18) and n≡6 (mod 36), we gave an almost complete solution. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 305–316, 2012  相似文献   

19.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

20.
The parameters in the governing system of partial differential equations of multiple‐network poroelasticity models typically vary over several orders of magnitude, making its stable discretization and efficient solution a challenging task. In this paper, we prove the uniform Ladyzhenskaya–Babu?ka–Brezzi (LBB) condition and design uniformly stable discretizations and parameter‐robust preconditioners for flux‐based formulations of multiporosity/multipermeability systems. Novel parameter‐matrix‐dependent norms that provide the key for establishing uniform LBB stability of the continuous problem are introduced. As a result, the stability estimates presented here are uniform not only with respect to the Lamé parameter λ but also to all the other model parameters, such as the permeability coefficients Ki; storage coefficients c p i ; network transfer coefficients βi j,i,j = 1,…,n; the scale of the networks n; and the time step size τ. Moreover, strongly mass‐conservative discretizations that meet the required conditions for parameter‐robust LBB stability are suggested and corresponding optimal error estimates proved. The transfer of the canonical (norm‐equivalent) operator preconditioners from the continuous to the discrete level lays the foundation for optimal and fully robust iterative solution methods. The theoretical results are confirmed in numerical experiments that are motivated by practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号