首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A mobile double-pulse laser-induced breakdown spectroscopy system for industrial environments is presented. Its capabilities as a process analytical technique for the recovery of metals from molten inorganic wastes are investigated. Using low-melting glass doped with different amounts of additives as a model system for recycling slags, the optimum number of shots, laser inter-pulse and acquisition delay times are optimized for solid and liquid (1200 °C) glass. Limits of detection from 7 ppm (Mn) to 194 ppm (Zn) are achieved working at a distance of 75 cm from the sample. To simplify the quantification of molten samples in an industrial furnace, the possibility is examined of using solid standards for analysis of molten material.  相似文献   

2.
We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.  相似文献   

3.
Laser-induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet range (VUV, λ < 200 nm) is employed for the detection of trace elements in polyethylene (PE) that are difficult to detect in the UV/VIS range. For effective laser ablation of PE, we use a F2 laser (wavelength λ = 157 nm) with a laser pulse length of 20 ns, a pulse energy up to 50 mJ, and pulse repetition rate of 10 Hz. The optical radiation of the laser-induced plasma is measured by a VUV spectrometer with detection range down to λ = 115 nm. A gated photon-counting system is used to acquire time-resolved spectra. From LIBS measurements of certified polymer reference materials, we obtained a limit of detection (LOD) of 50 µg/g for sulphur and 215 µg/g for zinc, respectively.The VUV LIBS spectra of PE are dominated by strong emission lines of neutral and ionized carbon atoms. From time-resolved measurements of the carbon line intensities, we determine the temporal evolution of the electronic plasma temperature, Te. For this, we use Saha–Boltzmann plots with the electron density in the plasma, Ne, derived from the broadening of the hydrogen H-α line. With the parameters Te and Ne, we calculate the intensity ratio of the atomic sulphur and carbon lines at 180.7 nm and at 175.2 nm, respectively. The calculated intensity ratios are in good agreement with the experimentally measured results.  相似文献   

4.
Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high.  相似文献   

5.
In this paper, the capabilities of laser-induced breakdown spectroscopy (LIBS) for rapid analysis of multi-component pharmaceutical tablets are illustrated using several examples. The atomic line emission from an element present only in a particular component of the tablet (for instance, emission of phosphorus from the drug, or of magnesium from the lubricant) enables the quantitative analysis of that component. It is also demonstrated that simple schemes can significantly improve the analytical performance of LIBS in this context. In particular, internal standardization with a carbon line was found to enable the correction of a matrix effect, apart from improving the precision of measurement. Furthermore, an improvement in the linearity of calibration was observed when the plasma continuum emission was used as internal standard. Finally, in the case of drugs containing halogen species (e.g. F or Cl), producing the plasma in a helium atmosphere caused a seven to eight-fold increase of the signal-to-background ratio, thus improving sensitivity. These data illustrate the strengths of LIBS for fast at-line assessment of the reliability of pharmaceutical manufacturing processes.  相似文献   

6.
A quantitative analysis of chromium in soil samples is presented. Different emission lines related to chromium are studied in order to select the best one for quantitative features. Important matrix effects are demonstrated from one soil to the other, preventing any prediction of concentration in different soils on the basis of a univariate calibration curve. Finally, a classification of the LIBS data based on a series of Principal Component Analyses (PCA) is applied to a reduced dataset of selected spectral lines related to the major chemical elements in the soils. LIBS data of heterogeneous soils appear to be widely dispersed, which leads to a reconsideration of the sampling step in the analysis process.  相似文献   

7.
We report on the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of important minerals and the accumulation of potentially toxic elements in calcified tissue, to trace e.g. the influence of environmental exposure, and other medical or biological factors. This theme was exemplified for quantitative detection and mapping of Al, Pb and Sr in representative samples, including teeth (first teeth of infants, second teeth of children and teeth of adults) and bones (tibia and femur). In addition to identifying and quantifying major and trace elements in the tissues, one- and two-dimensional profiles and maps were generated. Such maps (a) provide time/concentration relations, (b) allow to follow mineralisation of the hydroxyapatite matrix and the migration of the elements within it and (c) enable to identify disease states, such as caries in teeth. In order to obtain quantitative calibration, reference samples in the form of pressed pellets with calcified tissue-equivalent material (majority compound of pellets is CaCO3) were used whose physical properties closely resembled hydroxyapatite. Compounds of Al, Sr and Pb were added to the pellets, containing atomic concentrations in the range 100–10 000 ppm relative to the Ca content of the matrix. Analytical results based on this calibration against artificial samples for the trace elements under investigation agree with literature values, and with our atomic absorption spectroscopy (AAS) cross-validation measurements.  相似文献   

8.
Laser-induced breakdown spectroscopy (LIBS) has been employed for the analysis of slurry samples. Quantitative analysis of slurry samples is crucial and challenging. The problems associated with slurry samples include splashing, surface turbulence, and the difficulties of obtaining reproducible samples due to sedimentation. The LIBS analysis has achieved limited success due to inherent disadvantages when applied to slurry samples. In order to achieve improved measurement precision and accuracy, a spin-on-glass sampling method was evaluated. Five elements (Al, Ca, Fe, Ni, and Si) were examined in five slurry simulants containing varying amounts of each ion. Three calibration models were developed by using univariate calibration, multiple linear regression, and partial least square regression. LIBS analysis results obtained from the partial least square regression model were determined to be the best fit to results obtained from inductively coupled plasma optical emission spectroscopy analysis.  相似文献   

9.
We present a new method for improving the reliability of quantitative analysis by laser-induced breakdown spectroscopy (LIBS). The method can be considered as a variation of the calibration-free LIBS approach; although not completely standard-less, only one standard of known composition and similar matrix to the one to be analyzed is needed. On the other hand, the one-point calibration approach allows the empirical determination of essential experimental and spectroscopic parameters, whose knowledge is often imprecise or lacking; the result is a definite improvement of the trueness of LIBS analysis with respect to the traditional calibration-free approach.The characteristics and advantages of the proposed one-point calibration LIBS approach will be demonstrated on a set of copper-based samples of known composition.  相似文献   

10.
An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr4+Nd3+:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy Ep = 0.8 mJ, wavelength λ = 1064 nm, repetition rate frep. = 5 kHz, pulse duration tp = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg.

The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs).  相似文献   


11.
We report on recently developed analytical software to model laser-induced breakdown spectroscopy emission spectra and predict sample composition using a proposed calibration-free algorithm. The model uses a database of atomic emission lines to create a theoretical emission spectrum for selected elements using defined plasma parameters. The resulting theoretical spectrum is fitted to experimental data obtained from a laser-induced breakdown spectroscopy instrument comprising of four compact spectrometers that image the plasma emission. Elemental concentrations are obtained by comparing observed and predicted spectra while varying the plasma temperature and relative elemental concentrations. The use of the model for analysis of major elements in bauxites, brass and mineral samples as well as the analysis of laboratory air is demonstrated. For the majority of elements investigated agreement within 25% is achieved between estimated and certified values.  相似文献   

12.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   

13.
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2–3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.  相似文献   

14.
Laser-induced breakdown spectroscopy (LIBS) denotes a technique where a pulsed laser beam is used to ablate small amounts of the target material. The characteristic optical emission line intensities of the excited species in the laser-generated plasma allow a quantitative chemical analysis of the target material. LIBS is a fast, non-contact method allowing large working distances between the sample under investigation and the detection system. These properties make LIBS applicable to process control in metallurgy. We describe an apparatus designed for rapid in-situ analysis of solid and molten metals at variable distances of up to 1.5 m. A variable lens system allows compensation for varying positions of the liquid steel surface. The LIBS signal is guided by a fiber optic bundle of 12-m length to the spectrometer. Analysis of an element's concentration takes 7 s. Laboratory experiments using an induction furnace showed that the addition of admixtures to liquid steel results in rapid response of the system. Results including the in-situ monitoring of Cr, Cu, Mn and Ni within certain concentration ranges are presented (Cr: 0.11–13.8 wt.%; Cu: 0.044–0.54 wt.%; Mn: 1.38–2.5 wt.%; Ni: 0.049–5.92 wt.%).  相似文献   

15.
A measurement system for quantitative, remote materials analysis has been realised. It is based on the method of laser-induced breakdown spectroscopy (LIBS), utilising an optical fibre system, both to deliver the laser radiation to the sample specimen and to collect the light emission from the luminous plasma plume. Distances of up to 100 m between the remote location and the apparatus have been demonstrated. All experiments were performed in situ, under standard conditions of air at atmospheric pressure. In particular, quantitative analysis of ferrous specimens has been achieved, detecting traces of the elements Cr, Cu, Mn, Mo, Ni, Si and V, down to relative concentrations of about 200 ppm. This remote analytical technique has been implemented successfully for measurements in the hostile environment of nuclear reactor buildings.  相似文献   

16.
The composition of the line and band spectra of the plasma induced by a femtosecond laser pulse on the surface of sea water is determined. The temporal behaviors of the intensity of the continuum and the Ca II, Mg II and Na I lines are investigated. It is shown that the time dependence of the intensity of the Na I line is described by a monoexponential function. The characteristic decay times of the line intensities of Mg II and Na I were used to estimate the three-body recombination times. Using these values, we estimate the electron number density and the feasibility of Local Thermodynamic Equilibrium (LTE) criterion. A method involving excitation rate constants is proposed for the comparison of detection limits. For a plasma generated on a liquid surface, the following relation among detection limits will be obtained: LOD(Na) < LOD(K) < LOD(Ca) < LOD(Al) < LOD(Mg) < LOD(Zn).  相似文献   

17.
A large suite of natural carbonate, fluorite and silicate geological materials was studied using laser-induced breakdown spectroscopy (LIBS). Both single- and double-pulse LIBS spectra were acquired using close-contact benchtop and standoff (25 m) LIBS systems. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to identify the distinguishing characteristics of the geological samples and to classify the materials. Excellent discrimination was achieved with all sample types using PLS-DA and several techniques for improving sample classification were identified. The laboratory double-pulse LIBS system did not provide any advantage for sample classification over the single-pulse LIBS system, except in the case of the soil samples. The standoff LIBS system provided comparable results to the laboratory systems. This work also demonstrates how PCA can be used to identify spectral differences between similar sample types based on minor impurities.  相似文献   

18.
Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse) LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed.  相似文献   

19.
In order to improve on analytical selectivity and sensitivity, the technique of laser-induced fluorescence spectroscopy (LIFS) was combined with laser-induced breakdown spectroscopy (LIBS). The main thrust of this investigation was to address analytical scenarios in which the measurement site may be difficult to access. Hence, a remote LIBS+LIFS arrangement was set up, and the experiments were carried out on samples surrounded by air at atmospheric pressure, rather than in a controlled buffer gas environment at reduced pressure. Representative for proof of principle, the detection of aluminium, chromium, iron and silicon at trace level concentrations was pursued. These elements are of importance in numerous chemical, medical and industrial applications, and they exhibit suitable resonance transitions, accessible by radiation from a pulsed Ti:sapphire laser system (its 2nd and 3rd harmonic outputs). All investigated elements have an energy level structure in which the laser-excited level is a member of a group of closely-spaced energy levels; thus, this allowed for easy off-resonant fluorescence detection (collisional energy transfer processes). Since numerous of the relevant transition wavelengths are within a narrow spectral interval, this opens the possibility for multi-element analysis; this was demonstrated here for Cr and Fe which were accessed by rapidly changing the tuneable laser wavelength.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号