首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of a solitary wave for the shallow water model in convecting circumstance was established in previous works. It is still unknown that whether there exist periodic waves. In this paper, we prove that the models possess periodic waves with a fixed range of wave speed. The amplitude and wave speed are explicitly given. Moreover, the coexistence of the solitary wave and one periodic wave is established.  相似文献   

2.
We study the propagation of an unusual type of periodic travelling waves in chains of identical beads interacting via Hertz’s contact forces. Each bead periodically undergoes a compression phase followed by free flight, due to special properties of Hertzian interactions (fully nonlinear under compression and vanishing in the absence of contact). We prove the existence of such waves close to binary oscillations, and numerically continue these solutions when their wavelength is increased. In the long wave limit, we observe their convergence towards shock profiles consisting of small compression regions close to solitary waves, alternating with large domains of free flight where bead velocities are small. We give formal arguments to justify this asymptotic behavior, using a matching technique and previous results concerning solitary wave solutions. The numerical finding of such waves implies the existence of compactons, i.e. compactly supported compression waves propagating at a constant velocity, depending on the amplitude and width of the wave. The beads are stationary and separated by equal gaps outside the wave, and each bead reached by the wave is shifted by a finite distance during a finite time interval. Below a critical wave number, we observe fast instabilities of the periodic travelling waves, leading to a disordered regime.  相似文献   

3.
In this paper, the effects of quadratic singular curves in integrable wave equations are studied by using the bifurcation theory of dynamical system. Some new singular solitary waves (pseudo‐cuspons) and periodic waves are found more weak than regular singular traveling waves such as peaked soliton (peakon), cusp soliton (cuspon), cusp periodic wave, etc. We show that while the first‐order derivatives of the new singular solitary wave and periodic waves exist, their second‐order derivatives are discontinuous at finite number of points for the solitary waves or at infinitely countable points for the periodic wave. Moreover, an intrinsic connection is constructed between the singular traveling waves and quadratic singular curves in the phase plane of traveling wave system. The new singular periodic waves, pseudo‐cuspons, and compactons emerge if corresponding periodic orbits or homoclinic orbits are tangent to a hyperbola, ellipse, and parabola. In particular, pseudo‐cuspon is proposed for the first time. Finally, we study the qualitative behavior of the new singular solitary wave and periodic wave solutions through theoretical analysis and numerical simulation.  相似文献   

4.
A long waves-short waves model is studied by using the approach of dynamical systems. The sufficient conditions to guarantee the existence of solitary wave, kink and anti-kink waves, and periodic wave in different regions of the parametric space are given. All possible explicit exact parametric representations of above traveling waves are presented. When the energy of Hamiltonian system corresponding to this model varies, we also show the convergence of the periodic wave solutions, such as the periodic wave solutions converge to the solitary wave solutions, kink and anti-kink wave solutions, and periodic wave solutions, respectively.  相似文献   

5.
In this study, by using planar bifurcation method of dynamical system, we study a generalized Camassa-Holm (gCH) equation. As results, under different parameter conditions, many bounded travelling wave solutions such as periodic waves, periodic cusp waves, solitary waves, peakons, loops and kink waves are given. The dynamic properties of these exact solutions are investigated.  相似文献   

6.
We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.  相似文献   

7.
We study nonlinear resonances in granular periodic one-dimensional chains. Specifically, we consider a diatomic (“dimer”) chain composed of alternating “heavy” and “light” spherical beads with no precompression. In a previous work (Jayaprakash et al. in Phys. Rev. E 83(3):036606, 2011) we discussed the existence of families of solitary waves in these systems that propagate without distortion of their waveforms. We attributed this dynamical feature to “antiresonance” in the dimer that led to the complete elimination of radiating waves in the trail of the propagating solitary wave. Antiresonances were associated with certain symmetries of the velocity waveforms of the dimer beads. In this work we report on the opposite phenomenon: the break of waveform symmetries, leading to drastic attenuation of traveling pulses due to radiation of traveling waves to the far field. We use the connotation of “resonance” to describe this dynamical phenomenon resulting in maximum amplification of the amplitudes of radiated waves that emanate from the propagating pulse. Each antiresonance can be related to a corresponding resonance in the appropriate parameter plane. We study the nonlinear resonance mechanism numerically and analytically and show that it can lead to drastic attenuation of pulses propagating in the dimer. Furthermore, we estimate the discrete values of the normalized mass ratio between the light and heavy beads of the dimer for which resonances are realized. Finally, we show that by adding precompression the resonance mechanism gradually degrades, as does the capacity of the dimer to passively attenuate propagating pulses.  相似文献   

8.
This paper is concerned with traveling waves for the generalized Kadomtsev–Petviashvili equation \input amssym.tex $(w_{t}+w_{\xi\xi\xi}+f(w)_{\xi})_{\xi}=w_{yy},(\xi,y)\in{\Bbb R}^{2}, t\in{\Bbb R}$ , i.e. solutions of the form . We study both, solutions periodic in and solitary waves, which are decaying in x, and their interrelations. In particular, we prove the existence of a sequence of k‐periodic solutions, \input amssym.def $k\in{\Bbb N}$ , which is uniformly bounded in norm and converges to a solitary wave in a suitable topology. This result also holds for the corresponding ground states, i.e. solutions with minimal energy. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we investigate the planar Schrödinger–Poisson System. Based on fixed point argument, Riesz’s rearrangement, Hardy–Littlewood–Sobolev inequality and critical point theory, we prove the existence and symmetry properties of ground state solitary waves. In addition to their existence, we also obtain the orbital stability of solitary waves.  相似文献   

10.
Solitary waves in a general nonlinear lattice are discussed, employing as a model the nonlinear Schrödinger equation with a spatially periodic nonlinear coefficient. An asymptotic theory is developed for long solitary waves, which span a large number of lattice periods. In this limit, the allowed positions of solitary waves relative to the lattice, as well as their linear stability properties, hinge upon a certain recurrence relation which contains information beyond all orders of the usual two‐scale perturbation expansion. It follows that only two such positions are permissible, and of those two solitary waves, one is linearly stable and the other unstable. For a cosine lattice, in particular, the two possible solitary waves are centered at a maximum or minimum of the lattice, with the former being stable, and the analytical predictions for the associated linear stability eigenvalues are in excellent agreement with numerical results. Furthermore, a countable set of multi‐solitary‐wave bound states are constructed analytically. In spite of rather different physical settings, the exponential asymptotics approach followed here is strikingly similar to that taken in earlier studies of solitary wavepackets involving a periodic carrier and a slowly varying envelope, which underscores the general value of this procedure for treating multiscale solitary‐wave problems.  相似文献   

11.
In this paper, the theory of dynamical systems is employed to investigate loop waves and cusp waves of the Fujimoto-Watanabe equation. These waves contain solitary loop waves, periodic loop waves, peakons and periodic cusp waves. Under fixed parameter conditions, their exact explicit parametric expressions are given.  相似文献   

12.
The system of two coupled nonlinear Schrödinger equations has wide applications in physics. In the past, the main attention has been their solitary waves. Here we turn our attention to their periodic wave solutions. In this paper, the stability of the periodic solutions is studied analytically and the criteria for the stability are obtained. The long time evolution of the solutions to the coupled system is studied numerically for the unstable case emphasizing wave–wave interactions in nonlinear optics. Different kinds of evolution are observed depending on the coefficients of the system and the parameters of the unperturbed waves and perturbation. For certain ranges of parameters, the evolution appears to be periodic, while for some other ranges of parameters, solitary wave or solitary wave pairs can be excited among the irregular background although often the evolution is completely chaotic.  相似文献   

13.
In this paper, solitary waves and periodic waves for Generalized Drinfeld–Sokolov equations are studied, by using the theory of dynamical systems. Bifurcation parameter sets are shown. Under given parameter conditions, explicit formulas of solitary wave, kink (anti-kink) wave and periodic wave solutions are obtained.  相似文献   

14.
In order to investigate bounded traveling waves of the Burgers-Huxley equation, bifurcations of codimension 1 and 2 are discussed for its traveling wave system. By reduction to center manifolds and normal forms we give conditions for the appearance of homoclinic solutions, heteroclinic solutions and periodic solutions, which correspondingly give conditions of existence for solitary waves, kink waves and periodic waves, three basic types of bounded traveling waves. Furthermore, their evolutions are discussed to investigate the existence of other types of bounded traveling waves, such as the oscillatory traveling waves corresponding to connections between an equilibrium and a periodic orbit and the oscillatory kink waves corresponding to connections of saddle-focus.  相似文献   

15.
Stationary solutions of reversible evolutionary equations of mechanics with higher derivatives are analysed. A two-dimensional graphical method for investigating the solutions of systems of ordinary differential equations is described, which enables one to find special types of solutions: periodic waves, solitary waves and the structures of discontinuities. At the same time, solitary waves can be obtained by taking the limit of sequences of periodic waves and the structures of discontinuities obtained by taking the limit of sequences of solitary waves. This general approach has enabled the existence of all earlier predicted structures to be verified has enabled new types of structures (three-wave structures) to be revealed and has enabled all the necessary conditions at the discontinuities to be found. All the previously known types of solitary waves are found and new types of solitary waves are revealed (generalized ordinary and 1:1 multisolitons). Methods of finding generalized solitary waves, including those with a finite amplitude of the periodic component, are determined. Examples of the solution of the following problems are given for a fourth-order system: generalized solitary waves as the limiting solutions of two-wave resonance solutions, generalized solitary waves and the structure of a discontinuity with three waves, a 1:1 soliton and the structure of a discontinuity with a single radiated wave, a solitary wave with fixed propagation velocity, and the structure of a discontinuity in the form of a kink with radiation. A generalized 1:1 soliton and the structure of a discontinuity with two radiated waves is considered in the case of sixth-order systems. The discussion is mainly based on the example of travelling waves described by the generalized Korteweg-de Vries equations. Other models with complex dispersion (a plasma and a stratified fluid) are also considered.  相似文献   

16.

We show that near periodic rivet chains that connect two Kirchhoff plates and are modeled by point Sobolev transmission conditions, Rayleigh waves arise, propagate along the chains, and decay exponentially in the orthogonal direction. Under additional geometric conditions we discover the standing (periodic) waves that carry no energy.

  相似文献   

17.
We study bifurcations of periodic traveling waves in diatomic granular chains from the anti-continuum limit, when the mass ratio between the light and heavy beads is zero. We show that every limiting periodic wave is uniquely continued with respect to the mass ratio parameter, and the periodic waves with a wavelength larger than a certain critical value are spectrally stable. Numerical computations are developed to study how this solution family is continued to the limit of equal mass ratio between the beads, where periodic traveling waves of homogeneous granular chains exist.  相似文献   

18.
Wave propagation in a generalized microstructure PDE, under the Mindlin relations, is considered. Limited analytic results exist for the occurrence of one family of solitary wave solutions of these equations. Since solitary wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves, we find a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The new family of solutions occur in regions of parameter space distinct from the known solitary wave solutions and are thus entirely new. Directions for future work are also mentioned.  相似文献   

19.
In this paper, a generalized Camassa-Holm Kadomtsev-Petviashvili (gCH-KP) equation is studied. As a result, under different parameter conditions, the bounded travelling wave solutions such as periodic waves, periodic cusp waves, solitary waves, peakons, loops and kink waves are given, and the dynamic characters of these solutions are investigated.  相似文献   

20.
This article deals with the envelope solitary waves and periodic waves in the AB equations that serve as model equations describing marginally unstable baroclinic wave packets in geophysical fluids and also ultra‐short pulses in nonlinear optics. An envelope solitary wave has a width proportional to its velocity and inversely proportional to its amplitude. The velocity of the envelope solitary wave is partially dependent on its amplitude in the sense that the amplitude determines the upper or lower limit of the velocity. When two envelope solitary waves collide, they survive the collision and retain their identities except for a shift in the positions of both the envelopes and the carrier waves. The periodic wave solutions in sine wave form may be stable or unstable depending upon the wave parameters. When the sine wave is destabilized by small perturbations, its long‐time evolution shows a Fermi–Pasta–Ulam‐type oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号