首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly fluorescent LaPO4:Ce/Tb@LaPO4@SiO2 (core/shell/Si) nanorods(NRs) were fabricated with an average length 100 nm by co-precipitation process at low temperature. X-ray diffraction (XRD), Transmission electron microscopy (TEM), energy dispersive X-ray analysis, Fourier transform infrared, optical absorption and photoluminescence spectral techniques were applied to investigate the crystal structure, phase purity, morphology, surface chemistry and optical properties of the as-prepared samples. XRD results confirmed the formation of highly crystalline with single phase, monoclinic type structure. TEM image illustrates the poly-dispersed, narrow size distributed, irregular size rod-shaped nanostructures, with mean diameters of 20 nm and average lengths up to 140 nm. FTIR spectral analysis confirmed the silica surface modification. The comparative emission spectral study shows highest luminescence intensity of core/shell NRs, due to a reduction in nonradiative transition rate. The emission intensity enhancement proves that growing of an inert LaPO4 layer on the surface of luminescent core-NRs was an effective way to suppress surface related quenching mechanism. These well crystalline, highly aqueous soluble along with extraordinary colloidal stability core/shell/Si NRs were extremely suitable material in fluorescent bio-labeling applications.  相似文献   

2.
3.
The CdSe quantum dots (QDs) modified by mercapto-β-cyclodextrin (CD) were synthesized and characterized by transmission electron microscopy, powder X-ray diffraction, excitation and emission spectra, and fluorescence lifetime. When λex = 370 nm, the fluorescence peak of CdSe/CD QDs is at 525 nm. Phenanthroline (Phen) is able to quench their fluorescence, which can be recovered by the addition of DNA. The quenching and restoration of fluorescence intensity were found to be linearly proportional to the amount of Phen and DNA, respectively. The variation of the fluorescence intensity of the CdSe/CD QDs–Phen system was studied, and it was demonstrated to result from a static mechanism due to the formation of a Phen inclusion complex with the CdSe QDs modified by mercapto-β-cyclodextrin. The fluorescence recovery was due to the binding of DNA with Phen in the inclusion complex, leading to the freeing of the CdSe/CD QDs. The binding constants and sizes of the binding sites of the Phen–DNA interaction were calculated to be 1.33 × 107 mol?1 L and 10.79 bp.  相似文献   

4.
The laser-induced fluorescence spectra of leaves of Zea mays L. plants treated with different concentrations (0.01, 0.10 and 1.00 mM) of cadmium were recorded in region 650–800 nm using 488 nm line of Argon Ion laser as excitation source and PMT as detector. Besides this, blue-green fluorescence and Chl fluorescence were also measured using third harmonic (355 nm) of Nd:YAG laser as excitation source and 320 M monochromator with intensified charge coupled device as a detector in the region 400–800 nm. These spectra have been used to analyse the effect of several doses of cadmium on the photosynthetic activities of Z. mays L. plants. The fluorescence intensity ratios (FIR) of control as well as treated Z. mays L. were calculated by evaluating curve-fitted parameters using Gaussian spectral function. In addition, growth parameters like photosynthetic pigments content were also estimated. The chlorophyll fluorescence intensity ratio F685/F735 excited by both 488 and 355 nm lines are strongly correlated with photosynthetic pigments content (total chlorophyll and carotenoids) and their ratios. Consequently, there also existed a correlation between the blue-green fluorescence intensity ratio F470/F540 and photosynthetic pigments content.  相似文献   

5.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

6.
Cubic boron nitride based ceramics with silicon were sintered at 1350 °C under a pressure of 5.0 GPa. The effects of post-annealing on grain morphology, surface morphology, and photoluminescence of Si–cBN ceramics were investigated by scanning electron microscope and room temperature photoluminescence measurements. The results showed that the annealing treatment had great influence on cBN grain morphology, rather than the surface morphology. The luminescence intensity increased with annealing temperature and annealing time. The void-net structure formed by continuous distribution of SiOx particulate on the ceramic surface resulted in the emission band peaking at about 701.2 nm, and the tense passivation of Si by SiOx led to the peak's low intensity. The near ultraviolet emission band peaking at about 317 nm was attributed to the oxygen vacancies formed in cBN grain surface, caused by the scavenging of oxygen from the cBN grain surface by the added Si.  相似文献   

7.
《Supramolecular Science》1998,5(3-4):309-315
In the present study it is shown that streptavidin-containing multilayer films with varying numbers of polyelectrolyte spacer layers can be fabricated reproducibly using optimized deposition conditions. Direct alternation of streptavidin and PLB leads to multilayer systems with an average streptavidin thickness of 5.3 nm which is in good agreement with the dimensions of the protein. When the streptavidin layers are spacered by more polyelectrolyte layers the distance between the protein sheets is increased up to e.g. 6.5 nm in the case of (PLB/PSS/PAH/PSS/PLB) as spacer layer. X-ray reflectivity reveals that streptavidin increases the surface roughness of the films probably due to the rigid three-dimensional structure of the protein. The control of surface roughness seems to be essential for a successful multilayer build-up. The property of PLB to provide for multilayer construction by two different interactions (electrostatic and specific) allowed to probe the interpenetration depth of adjacent layers. For the [PLB/(PSS/PL)2/streptavidin] system an interpenetration depth of about 4 polymer layers corresponding to approximately 3.4 nm has been derived. These data are in agreement with a model for pure polyelectrolyte films obtained from neutron and X-ray reflectivity data.  相似文献   

8.
The interaction of Momordica charantia (bitter gourd) seed lectin (MCL) with several nucleic acid bases has been investigated by monitoring changes induced in the protein fluorescence by ligand binding. Values of the binding constant, Ka were obtained as 1.1 × 104, 1.56 × 104 and 2.2 × 103 M?1 for adenine, cytosine and uracil, respectively. In addition, binding of 8-anilinonaphthalene 1-sulfonate (ANS) with MCL was investigated by fluorescence spectroscopy. Interaction with MCL at low pH results in a large enhancement of the fluorescence intensity of ANS with a concomitant blue shift in the emission λmax, whereas at neutral and basic pH changes in both fluorescence intensity and emission maximum were very small, clearly suggesting that the MCL–ANS interaction is stronger at lower pH values. When excited at 295 nm in the presence of ANS, the protein fluorescence decreased with a concomitant increase in the emission intensity of ANS, suggesting resonance energy transfer from the tryptophan residues of MCL to ANS. Gel filtration profiles of MCL at pH values 2.0 and 7.4 are similar indicating that the tetrameric nature of MCL is retained even at low pH. Addition of lactose or adenine to MCL–ANS mixture did not alter the change in ANS fluorescence suggesting that lactose, adenine and ANS bind to MCL at independent and non-interacting sites. These results are relevant to understanding the functional role of MCL in the parent tissue.  相似文献   

9.
CaMoO4 crystallites with different morphology were successfully prepared by an electrochemical method with the assistance of ethylene glycol (EG) for the first time. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescent spectra techniques (PL), respectively. The results showed that the crystallization of CaMoO4 relies on both applied electric current intensity and EG content in the electrolytic solution. With the increase of EG content, CaMoO4 crystallite sizes decreased, and their morphology gradually changed from a cake-like shape into micro-rods with a higher aspect ratio. Moreover, the higher the applied electric current intensity, the more obvious the above effect was. All samples exhibit a green emission centered at 512 nm with 280 nm excitation wavelength at room temperature, but show different PL intensity.  相似文献   

10.
Micro X-ray fluorescence was used to study both homogeneous and heterogeneous particle systems. Specifically, homogeneous glass microspheres and heterogeneous soil particle samples were prepared by both bulk and single particle sample preparation methods for evaluation by micro X-ray fluorescence. Single particle sample preparation methods allow for single particles from a collected sample to be isolated and individually presented to the micro X-ray fluorescence instrument for analysis. Various particle dispersion methods, including immobilization onto Tacky Dot™ slides, mounting onto double-sided sticky tape affixed to polypropylene film, or attachment to polypropylene film using 3M Artist's Adhesive, were used to separate the sample particles for single particle analysis. These methods were then compared and evaluated for their ability to disperse the particles into an array of single separated particles for optimal micro X-ray fluorescence characterization with minimal background contribution from the particle mounting surface. Bulk methods of particle sample preparation, which included pellet preparation and aerosol impaction, used a large quantity of collected single particles to make a single homogeneous specimen for presentation to the instrument for analysis. It was found that single particle elemental analysis by micro X-ray fluorescence can be performed if the particles are well separated (minimum separation distance = excitation source beam diameter) down to a particle mass of ∼ 0.04 ng and a mean particle diameter of ∼ 0.06 μm. Homogeneous particulates can be adequately characterized by micro X-ray fluorescence using either bulk or single particle analysis methods, with no loss of analytical information. Heterogeneous samples are much harder to characterize, and both single particle as well as bulk analyses must be performed on the sample to insure full elemental characterization by micro X-ray fluorescence.  相似文献   

11.
We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature TS  500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with TS. The size and brightness of expanding plumes increase at higher TS while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with TS. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to TS = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes.  相似文献   

12.
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface.  相似文献   

13.
The fluorescence of ciprofloxacin (CIP) in HAc–NaAc buffer solution and the presence of cetyltrimethylammonium bromide (CTMAB) enhanced visibly with adding Al(III) and La(III). This enhanced fluorescence spectra were studied, and a new co-luminescence system of CIP + Al(III) + La(III) + CTMAB was discovered. There was a linear relationship between the enhanced fluorescence intensity and the concentration of CIP in the range of 0.50–80.2 μg l?1 under the optimized condition. A novel enhanced fluorescence method for the determination of trace CIP was established by using this co-luminescence system. The detection limit of the proposed method was 0.17 μg l?1 for CIP. This method is simple, rapid and sensitive. The CIP in milk samples were analyzed by the proposed method with satisfactory results. The relative standard deviation and the recovery were in ranges of 3.21–4.34% and 97.1–100.1%, respectively. The mechanism of the co-luminescence reaction and the reasons for fluorescence enhancement has been discussed.  相似文献   

14.
《Solid State Sciences》2007,9(10):924-932
Scandia and rhenium doped tungsten powders were prepared by solid–liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc2O3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm2 at 900 °C could be obtained for this cathode. A Ba–Sc–O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.  相似文献   

15.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

16.
The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub-volumes of different sizes allow us to determine microstructural parameters as a function of sub-division size. We show that the minimum size for a representative volume element is about 43 × 60 × 60 μm for volume-specific surface area, but as large as the full sample volume for porosity and tortuosity.  相似文献   

17.
New copper(I) mixed-ligand complexes 14 of the formula Cu(N–N)PR3X, where N–N = 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (5,5′dimbpy) and PR3 = tricyclohexylphosphine, tris(2-cyanoethyl)phosphine and isopropyldiphenylphosphine, have been synthesized. The complexes were characterized by EA, IR, NMR and single crystal X-ray diffraction. The solution fluorescence emission spectra were measured. The single crystal X-ray analysis showed that the copper(I) ion is four-coordinate with a distorted tetrahedral geometry. The complexes catalyze the formation of diphenylacetylene from the coupling of halobenzene with phenylacetylene. The complex Cu(5,5′-dimethylbpy)P{(cyhexyl)3}I showed the highest catalytic activity. At room temperature all four complexes exhibit, in dichloromethane, emission maxima in the 329–344 nm range, corresponding to intra-ligand excited states.  相似文献   

18.
The electrodeposition–annealing route to fabricating thin film of the promising photocatalyst material anatase-titanium dioxide (anatase-TiO2) has been studied. The sample was deposited with a solution of N,N-dimethylformamide containing titanium compound by controlled-potential technique. SEM image showed the annealed sample at 600 °C for 1 h under air provided a continuous film with a thickness of ca. 350 nm. In this sample, X-ray photoelectron spectrum corresponding to the Ti 2p peak assigned to a chemical bond of TiO2 and X-ray diffraction peaks assigned to the anatase phase were observed, respectively. Electrochemical oxidation in sodium sulfate solution on this annealed film was enhanced in the presence of UV light radiation. These results confirm the successful synthesis of photocatalytic anatase-TiO2 film by the electrodeposition and annealing process.  相似文献   

19.
《Chemical physics letters》2006,417(1-3):72-77
The atomic structure of the Al-induced clusters on Si(0 0 1) surface formed by the annealing of 0.5 ML Al/Si(0 0 1) at 500 °C has been studied using coaxial impact collision ion scattering spectroscopy (CAICISS). CAICISS results proposed that the Al atoms occupy the cave site (T4 site) and off-centered T4 site. To determine the structure of the Al-induced clusters definitely, classical ion-scattering trajectory simulations using scattering and recoiling imaging code (SARIC) have been performed for the recently proposed most possible four different cluster models (Bunk, Zotov, Kotlyar, and Zavodinsky model). Our CAICISS spectra and simulation results show that the Bunk model is the best plausible one among the models. As the results of the simulations, it is found that Al–Si dimers has been oriented on the topmost layer of the Si(0 0 1) surface with a bonding length (Δz) of 1.00 ± 0.05 Å.  相似文献   

20.
In recent years, In2S3 is considered as a promising buffer layer in the fabrication of heterojunction solar cells. Film thickness is one of the important parameters that alters the physical characteristics of the grown layers significantly. The effect of film thickness on the structural, morphological, optical and electrical properties of close space evaporated In2S3 layers has been studied. In2S3 thin films with different thicknesses in the range, 100–700 nm were deposited on Corning glass substrates at a constant substrate temperature of 300 °C. The films were polycrystalline exhibiting strong crystallographic orientation along the (103) plane. The deposited films showed mixed phases of both cubic and tetragonal structures up to a thickness of 300 nm. On further increasing the film thickness, the layers showed only tetragonal phase. With increase of film thickness, both the crystallite size and surface roughness in the films were found to be increased. The optical constants such as refractive index and extinction coefficient of the as-grown layers have been calculated from the optical transmittance data in the wavelength range, 300–2500 nm. The optical transmittance of the films was decreased from 82% to 64% and the band gap varied in the range, 2.65–2.31 eV with increase of film thickness. The electrical resistivity as well as the activation energy was evaluated and found to decrease with film thickness. The detailed study of these results was presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号