首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reports the isolation and characterisation of mixed ligand complexes of the types Ba[M(Ox)2glydtc], [M2′(Ox)4glydtc], [M2(QA)2glydtc] and [M2′(QA)4glydtc] (where glydtc=glycinyldithiocarbamate; HOx=8-hydroxyqinoline;HQA=p-methyl-5-phenylazo-8-hydroxyquinoline and M=Co(II),Ni(II) or Cu(II); M′=Fe(III) or Cr(III). The structures for the complexes have been elucidated on the basis of elemental analysis, electronic, IR and mass spectroscopy. Electronic spectral data for the complexes were in accordance with an octahedral environment around the central metal ions in all metal chelates except for [Co2(QA)2glydtc] and [Ni2(QA)2glydtc] where the structure around Co(II) and Ni(II) may be tetrahedral. The complexes were proposed to be dimeric except those of Ba[M(Ox)2glydtc]. A study of the thermal decomposition of the complexes has also been carried out. For Ba[M(Ox)2glydtc], elimination of carbon dioxide was observed. However, evolution of nitrogen and formation of tolyl radicals occur for [M2(QA)2glydtc] and [M2′(QA)4glydtc]. Kinetic parameters for the various decomposition stages were calculated using the Coats–Redfern and Horowitz–Metzgerequations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
In this study we prepared N,O-bidentate ligands, sodium salt of 5-(4′-hydroxyphenylimino)quinolin-8-one, and sodium salt of 5,8-quinolinequinone-5-(8-hydroxy-5-quinolylimide) [indoöxine]. According to experimental results, formation of nickel complexes causes a large bathochromic shift of the absorption bands; in addition, these absorption bands appear in the near-infrared region at 678-812 nm. Also, EA, 13C NMR, UV, and IR were performed to characterize these complexes. The above results suggest that coordination occurs via the oxygen atom of the quinoneimine moiety and the nitrogen atom of the pyridine moiety.  相似文献   

3.
The thermal decompositions of cobalt(II), nickel(II) and copper(II) complexes of4-(3'-sulfonylazido-6'-methoxyphenylazo)-1-phenyl-3-methyl-2-pyrazolin-5-one H(D1–SO2N3) and 4-(4'-sulfonylazido phenylazo)-3-phenyl-3-methyl-2-pyrazolin-5-one H(D2–SO2N3) were studied by thermogravimetry. The decomposition in all cases takes place along two stages. The first stage is due to the elimination of water and nitrogen molecules with the formation of tetracoordinate complexes containing nitrene reactive species[M(DSO2N:)2]. The second stage represents the decomposition of the material to the metal oxide. The kinetics of the decomposition were examined by using Coats–Redfern, the decomposition in all complexes was found to be first order for the first and second stages. The activation energies and other activation parameters (H* and S* and G*) were computed and related to the bonding and stereochemistry of the complexes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
New magnetic metal complexes with organic radical ligands, [M(hfac)2(PyBTM)2] (M = NiII, CoII; hfac = hexafluoroacetylacetonato, PyBTM = (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical), were prepared and their crystal structures, magnetic properties, and electronic structures were investigated. Metal ions in [M(hfac)2(PyBTM)2] constructed distorted octahedral coordination geometry, where the two PyBTM molecules ligated in the trans configuration. Magnetic investigation using a SQUID magnetometer revealed that χT increased with decreasing temperature from 300 K in the two complexes, indicating an efficient intramolecular ferromagnetic exchange interaction taking place between the spins on PyBTM and M with J/kB of 21.8 K and 11.8 K for [NiII(hfac)2(PyBTM)2] and [CoII(hfac)2(PyBTM)2]. The intramolecular ferromagnetic couplings in the two complexes could be explained by density functional theory calculations, and would be attributed to a nearly orthogonal relationship between the spin orbitals on PyBTM and the metal ions. These results demonstrate that pyridyl-containing triarylmethyl radicals are key building blocks for magnetic molecular materials with controllable/predictable magnetic interactions.  相似文献   

5.
Zn(II), Co(II) and Ni(II) complexes with some 5-substituted-1,3,4-thiadiazoles (L1-L4) have been prepared and characterized by conductivity, microanalysis, thermal analysis, infrared and electronic spectra measurements. All complexes behave as 1:1 electrolyte and the ligands are coordinated as bidentate molecules. The stability constants and energy of formation are determined and discussed on the basis of the ligands structure.  相似文献   

6.
A series of polymeric cobalt(II), nickel(II), zinc(II) and cadmium(II) azido complexes with hydrazine of the type [M(N2H4)(H2O)(N3)Cl]n, [M(N2H4)(N3)2]n and [M(N2H4)2(N3)2]n have been prepared. These were characterized by elemental analyses, magnetic susceptibility measurements, electronic and IR spectra. The complexes are highly insoluble in polar and non polar solvents. All the complexes decompose with explosion at different temperatures between 100°C to 200°C. The magnetic moment and electronic spectral data for Co(II) and Ni(II) complexes suggest that the complexes have octahedral structure. The ligand-field parameters (10 Dq, B, β, β° and LFSE) have also been calculated for all Co(II) and Ni(II) complexes which indicate a significant covalent character of M-L bonds. The IR spectra of the complexes show that the azide group and hydrazine molecule both act as bidentate bridging ligands in [M(N2H4)(H2O)(N3)Cl]n and [M(N2H4)(N3)2]n type complexes but the azide group is terminally bonded to metal in all [M(N2H4)2(N3)2]n type complexes.  相似文献   

7.
8.
Mononuclear macrocyclic complexes of manganese(II ), cobalt(II ) and nickel(II ) perchlorate using 10 different oxaazamacrocyclic ligands (L1 — L10) have been prepared and characterized. The complexation reactions with the diiminic ligands were obtained by template condensation of the appropriate dialdehyde and diamine precursors; the reduced macrocycle complexes were synthesized using a direct route. The complexes have been characterized by elemental analyses, molar conductivity, mass spectrometry, IR, UV‐vis spectroscopy, diffuse reflectance and magnetic susceptibility measurements.  相似文献   

9.
10.
Mixed ligand complexes of Ni(II) ion with 1,1-dicyanoethylene-2,2-dithiolate (i-MNT 2−) as a primary ligand and o -phenylenediamine (OPD), pyridine (py), α-picoline (α-pic), β-picoline (β-pic) or γ-picoline (γ-pic) as secondary ligands have been isolated and characterized on the basis of analytical data, molar conductance, magnetic susceptibility, electronic and infrared spectral studies. The molar conductance data reveal that most of the complexes have 1:1 electrolytic nature in DMF solution. Magnetic and electronic spectral studies suggest square planer and octahedral stereochemistries around Ni(II) ions. Infrared spectral studies suggest bidentate chelating behaviour of i-MNT2− ion and OPD while other ligands show unidentate behaviour in their complexes.  相似文献   

11.
Two Schiff base ligands, 2-{E-[(5-phenyl-6H-1,3,4-thiadiazin-2yl)imino]methyne}-1-naphthol (L1H) and 5-nitro-2-{[(5-phenyl-6H-1,3,4-thiadiazin-2-yl)imino]methyne}phenol (L2H) have been prepared from 5-phenyl-6H-1,3,4-thiadiazin-2-amine (A), 2-hydroxynaphthaldehyde (1) and 2-hydroxy-5-nitrobenzaldehyde (2) Mononuclear Co(II), NiII and CuII complexes of the ligands have been prepared by using CoII, NiII and CuII salts with a 1:2 metal:ligand ratio. It was determined that the bidentate behavior of the ligands is accomplished via the phenolic oxygen and the azomethine nitrogen atoms. The structures of the ligands and their complexes were identified by using elemental analyses, i.r., 1H-n.m.r. spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (t.g.a.).  相似文献   

12.
New [ML(H2O)2] complexes (M = Co2+, Ni2+, or Cu2+; H2L = diphenylthiocarbazide) were synthesized and studied using IR and diffuse reflection electronic spectroscopy, magnetic chemistry, conductometry, and DTA. The metals were shown to coordinate L2–through nitrogen and sulfur atoms. The complex [CuL(H2O)2] is a dimer.  相似文献   

13.
Some binary and ternary complexes of Ni(II) with arylideneanthranilic acids and Lewis bases have been prepared and characterized by elemental analyses, IR spectra and X-ray powder diffraction. On the basis of the IR spectra it was found that the Schiff bases used act as monobasic bidentate ligands except for the ortho-hydroxy derivative which acts as a dibasic tridentate ligand. From X-ray analysis it is concluded that the binary Ni(II) chelates are isostructural, and the ternary Ni(II) complexes are also isostructural.  相似文献   

14.
Summary N-formamidosalicylaldimine (H2SF) andN-acetamidosalicylaldimine (H2SA) complexes of CuII, NiII and CoII have been synthesized and characterized by analytical, spectroscopic and magnetic data. The ligands coordinate to the metalvia the hydroxyl, carbonyl and imino groups to yield normal paramagnetic and insoluble complexes which decompose above 250°.  相似文献   

15.
N-Unsubstituted azoles (1,2,4-triazole, 3-amino-1,2,4-triazole) and 5-R-tetrazoles (R = H, CH3, C2H5, C4H9, CH = CH2, C6H5, p-CH3C6H4, NH2) form water-soluble polymeric complexes in systems containing certain transition metal salts. The data obtained and the results of MP2/6-31G* * calculations of the electronic structures of 5-R-tetrazolate anions show that the ability of azoles for formation of polymeric complexes with transition metal ions is mostly determined by the acid-base properties of azoles. The geometric structure of a polymeric chain with the Co2+ ion having the coordination number 6 and the 5-methyltetrazolate anion being a bridging ligand was examined at the STO-3G level. It was shown that the coordination by the 2- and 3-nitrogen atoms of the tetrazole ring is most favored by energy.  相似文献   

16.
Three series of metal salophen complexes derived from Zn2+, Cu2+, Pt2+ and Ni2+ have been synthesized and their interaction with quadruplex DNA has been evaluated. The compounds differ on the number of ethyl piperidine substituents. They have been characterized by 1H NMR, IR and UV-visible spectroscopies and by HR-mass spectrometry. Their luminescent properties have been also evaluated and we can observe that, as expected, Zn2+ and Pt2+ complexes are those displaying more interesting luminescence with an emission band red-shifted with respect to the corresponding uncoordinated ligand. DNA interactions with G4 and duplex DNA were evaluated by FRET melting assays (for the Zn2+, Cu2+ and Ni2+ complexes) and by emission titrations (for one Pt2+ complex) which indicated that the disubstituted compounds 2-Ni and 2-Pt are the only ones that display good affinity for G4 DNA structures.  相似文献   

17.
A series of new Schiff base complexes of FeIII, CoII, NiII and CuII containing Ph3P has been prepared and characterised. The Schiff bases have been prepared by the condensation of salicylaldehyde and naphthaldehyde with the appropriate aniline. The complexes have been characterised by analytical, spectral (i.r., electronic, magnetic, e.p.r., 1H-n.m.r.) and electrochemical studies. The new complexes have been used as catalysts for aromatic coupling reactions. Higher catalytic activity has been observed for NiII compared to the other complexes.  相似文献   

18.
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff bases derived from o-aminobenzoic acid with salicylaldehyde and its 5-chloro and 5-bromo derivatives have been prepared. The 1:1 (metal-ligand) stoichiometry of these complexes is shown by elemental analysis, gravimetric estimations and conductometric titrations while the structures of the complexes are proved by i.r. spectra and thermogravimetric analysis. The magnetic susceptibility and electronic spectra of Cu(II) complexes indicate the nonplanar binuclear structures while that of Ni(II) and Co(II) show their paramagnetic octahedral geometry. The molar conductance values in nitrobenzene indicate the nonelectrolytic behaviour of the complexes. The results show that the complexes of the type (Cu·L)2, Ni·L·3H2O and Co·L·3H2O are formed having solvent molecule in coordination with the metal ion. The monopyridine and monoammonia adducts of Cu(II) complexes were found to be monomeric.  相似文献   

19.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula [M(CH3_xClxCOO)2QuinNO] (when M=Co(II), Ni(II); X=1,2 and 3 and when M=Cu(II), X=l and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCI3COO)2(QuinNO)2]. The adducts isolated are soluble in common organic solvents.  相似文献   

20.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula (M(CH3-xClxCOO)2QuinNO) (when M=Co(II), Ni(Il); X=l, 2 and 3 and when M=Cu(II), X=1 and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCl3COO)2 (QuinNO)3]. The adducts isolated are soluble in common organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号