共查询到20条相似文献,搜索用时 15 毫秒
1.
George A Maijenburg AW Maas MG Blank DH ten Elshof JE 《Langmuir : the ACS journal of surfaces and colloids》2011,27(19):12235-12242
A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected areas of SAM were protected from plasma oxidation via a soft lithographic stamp. The patterned SAMs were used as templates for site-selective electrodeposition, electroless deposition and solution-phase deposition of functional materials such as ZnO, Ni, Ag thin films, and ZnO nanowires. The patterned SAMs and functional materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and tunneling AFM (TUNA). 相似文献
2.
Briseno AL Aizenberg J Han YJ Penkala RA Moon H Lovinger AJ Kloc C Bao Z 《Journal of the American Chemical Society》2005,127(35):12164-12165
This work demonstrates a method for inducing site-specific nucleation and subsequent growth of large oriented organic semiconductor single crystals using micropatterned self-assembled monolayers (SAMs). We demonstrate growth of oriented, patterned, and large organic semiconductor single crystals for potential use in organic electronic devices. The control over multiple parameters in a single system has not yet been reported. The ability to control various aspects of crystal growth in one system provides a powerful technique for the bottom-up fabrication of organic single-crystal semiconductor devices. 相似文献
3.
Nogues C Lang P Desbat B Buffeteau T Leiserowitz L 《Langmuir : the ACS journal of surfaces and colloids》2008,24(16):8458-8464
We investigated the fine structure of a self-assembled monolayer of dodecanethiol functionalized by alpha-quaterthiophene on gold (alpha-4TC 12H 24SH). The molecular orientation, quantified using polarization modulation infrared reflection-absorption spectroscopy, was studied as a function of the adsorption time. The alpha-4T moieties arrange in the upright position on the surface as the adsorption time increases, while the alkyl chain organization remains poor. Here we quantify the orientation of the self-assembled monolayer and, more significantly, reveal through surface X-ray diffraction that after a long incubation period (12 h) the alpha-4T on the gold surface adopts a 2D crystal structure. 相似文献
4.
Ta VT Nimse SB Song KS Kim J Sayyed DR Nguyen VT Kim T 《Chemical communications (Cambridge, England)》2011,47(40):11261-11263
The mixed SAM obtained by the self-assembly of the monothiolated calix[4]crown-5 receptor 1 and the subsequent addition of the thiolated alkylferrocene guest 3 was characterized at the molecular scale by the favorable receptor-guest interactions by using cyclic voltammetry (CV). 相似文献
5.
Banno N Nakanishi T Matsunaga M Asahi T Osaka T 《Journal of the American Chemical Society》2004,126(2):428-429
Enantioselective crystal growth of leucine occurs on a solid surface modified with a self-assembled monolayer depending on the chirality of the enantiomer attached, as evidenced by the X-ray diffraction method. 相似文献
6.
Gutzler R Ivasenko O Fu C Brusso JL Rosei F Perepichka DF 《Chemical communications (Cambridge, England)》2011,47(33):9453-9455
We report the formation of highly-ordered self-assembled monolayers of an achiral organic semiconductor molecule. STM results show spontaneous formation of very large single domains of ordered chiral monolayers. DFT calculations support the identification of halogen bonds as the primary interactions that steer molecular self-assembly, leading to organizational chirality. 相似文献
7.
The growth of octadecyltrimethylammonium bromide (C(18)TAB) monolayers on mica was investigated using atomic force microscopy and infrared spectroscopy. A critical temperature was identified below which the monolayer formed via an "islanding" mechanism, that is, nucleation and growth of densely packed two-dimensional (2D) islands within a matrix of a disordered dilute phase. However, above the critical temperature, there was no coexistence of 2D phases during film formation. Instead, the monolayer gradually became better ordered, remaining laterally homogeneous throughout. We show that this corresponds to a critical point in a 2D phase diagram of the monolayer. Additional evidence is provided by the in situ observation of 2D phase separation upon cooling an incomplete monolayer from the one-phase to the two-phase region. The lack of coexisting domains (and domain boundaries) during growth above the critical point provides a possible route for the preparation of essentially defect-free monolayers. 相似文献
8.
A novel strategy based on self-assembly technology was devised for design of photosensitive material as a ferroelectric liquid crystal (FLC) alignment layer. This development offers new tools for the study and control at the molecular level of the interaction of FLCs with solid surfaces. The photoreactive material was self-assembled to the substrate by covalent bond linkage due to a special chemical adsorption reaction. Through ester bond linkage, a cyano group with strong polarity was introduced to be terminus of the film. Under irradiation of linearly polarised ultraviolet light, an optically anisotropic self-assembled film was easily obtained. The irradiated film was demonstrated to result in homogenous alignment of FLC by optical transmittance measurements and polarising optical microscopy images of a FLC cell at different rotation angles. The alignment quality of the FLC on this self-assembled monolayer film is comparable to that of commercial rubbed polyimide film. Furthermore, it was also found that the fine alignment of the FLC may be related to the smoothness of the self-assembled film surface owing to its polar end. 相似文献
9.
Fang G Shi Y Maclennan JE Clark NA Farrow MJ Walba DM 《Langmuir : the ACS journal of surfaces and colloids》2010,26(22):17482-17488
Photosensitive surfaces treated to have in-plane structural anisotropy by illumination with polarized light can be used to orient liquid crystals (LCs). Here we report a detailed study of the dynamic behavior of this process at both short and long times, comparing the ordering induced in the bare active surface with that of the LC in contact with the surface using a high-sensitivity polarimeter that enables detailed characterization of the anisotropy of the active surface. The experiments were carried out using self-assembled monolayers (SAMs) made from dimethylaminoazobenzene covalently bonded to a glass surface through a triethoxysilane terminus. This surface gives planar alignment of the liquid crystal director with an azimuthal orientation that can be controlled by the polarization of actinic light. We find a remarkable long-term collective interaction between the orientationally ordered SAM and the director field of the LC: while an azobenzene based SAM in contact with an isotropic gas or liquid relaxes to an azimuthally isotropic state in the absence of light due to thermal fluctuations, an orientationally written SAM in contact with LC in the absence of light can maintain the LC director twist permanently, that is, the SAM is capable of providing azimuthal anchoring to the LC even in the presence of a torque about the surface normal. We find that the short-time, transient LC reorientation is limited by the weak azimuthal anchoring strength of the SAM and by the LC viscosity. 相似文献
10.
Zuzana Nováková Renáta Oriňáková Andrea Straková Fedorková Andrej Oriňák 《Journal of Solid State Electrochemistry》2014,18(8):2289-2295
The electrochemical behaviour of self-assembled monolayer (SAM) of aliphatic hexadecanethiol was studied by cyclic voltammetry (CV), elimination voltammetry with linear scan (EVLS) and crystal quartz microbalance (QCM). SAMs were electrochemically created on gold-coated QCM crystal through the sulphur in 1-hexadecanethiol molecule head group. The effect of thiol concentration and potential scan rate on the SAM formation was studied. Formation of SAM was confirmed by CV and QCM. EVLS results revealed the kinetically controlled process followed with electrode reaction in adsorbed state characteristic for SAM formation at lower concentration. The electrode reaction of a totally adsorbed electroactive species was indicated by means of a peak-counter peak signal at higher thiol concentration. 相似文献
11.
《Electrochemistry communications》2002,4(9):674-678
A carotenoid self-assembled monolayer was prepared by dipping a gold electrode into a solution of 4′-thioxo-β,β-caroten-4-one in acetonitrile. Electrochemistry of the surface layer was investigated by cyclic voltammetry in an aqueous solution. No electrochemical reaction was detected in the potential region between 0.5 and −0.6 V vs. SCE. The anodic reaction of adsorbed carotenoid occurs at 0.8 V, whereas the irreversible anodic desorption proceeds at 1.4 V in 0.01 M HClO4. Formation of the surface layer resulted in a decrease of the charging current as well as in a strong inhibition of the electron transfer reaction for species such as Fe(CN)63−, Ru(NH3)63+, and dissolved oxygen. Prolonged voltage cycling in the O2 reduction range induced some changes in the surface layer characteristics that were tentatively accounted for by the cross-linking of adsorbed molecules under the effect of transient oxygen radicals. 相似文献
12.
Electrochemical quartz crystal microbalance study of azurin adsorption onto an alkanethiol self-assembled monolayer on gold 总被引:1,自引:0,他引:1
Fleming BD Praporski S Bond AM Martin LL 《Langmuir : the ACS journal of surfaces and colloids》2008,24(1):323-327
A quartz crystal microbalance coupled with electrochemistry was used to examine the adsorption of azurin on a gold electrode modified with a self-assembled monolayer of octanethiol. Azurin adsorbed irreversibly to form a densely packed monolayer. The rate of azurin adsorption was related to the bulk concentration of azurin in solution within the concentration range studied. At a high azurin concentration (2.75 muM), adsorption was rapid with a stable adsorption maximum attained in 2-3 min. At a lower azurin solution concentration (0.35 muM), the time to reach a stable adsorption maximum was approximately 30 min. Interestingly, the maximum surface concentration attained for all solution concentrations studied by the QCM method was 25 +/- 1 pmol cm-2, close to that predicted for monolayer coverage. The dissipation was monitored during adsorption, and only small changes were detected, implying a rigid adsorption model, as needed when using the Sauerbrey equation. Cyclic voltammetric data were consistent with a one-electron, surface-confined CuII/CuI azurin process with fast electron-transfer kinetics. The electroactive surface concentration calculated using voltammetry was 7 +/- 1 pmol cm-2. The differences between the QCM and voltammetrically determined surface coverage values reflect, predominantly, the different measurement methods but imply that all surface-confined azurin is not electrochemically active on the time scale of cyclic voltammetry. 相似文献
13.
We have developed a simple, robust method by which to construct complex two-dimensional structures based on controlling interfacial chemistry. Our approach is to employ UV-photopatterning and the reaction of vapor-deposited metals with self-assembled monolayers. To demonstrate the method, we have selectively vapor-deposited Mg on a patterned -CH3/-COOH-terminated alkanethiolate surface. The deposited metal penetrates through the -CH3 SAM to the Au/S interface while reacting with and accumulating on top of the -COOH SAM. This work has important applications in molecular/organic electronics, sensing, and other technologies. Our method has many advantages: it is extensible to many different materials, easily parallelized, affords precise nanoscale placement, and is fully compatible with photolithography. 相似文献
14.
Observations of two spectrally distinct ring breathing modes of guanine and adenine in the surface-enhanced Raman spectrum (SERS) of a dsDNA self-assembled monolayer on an Au nanoshell SERS substrate provide information concerning the orientation of its constituent molecules. The two modes vary with DNA concentration in a highly systematic manner, consistent with studies suggesting DNA molecules tend toward a more horizontal orientation at low-surface concentrations and a more vertical conformation at high concentrations. The introduction of small molecular spacers coadsorbed onto the Au nanoshell surface to "raise" the DNA molecules yields a SERS spectrum consistent with a more upright molecular orientation. 相似文献
15.
The diffusion of tricresyl phosphate molecules on an octadecyltrichlorosilane self-assembled monolayer (SAM) was characterized using molecular dynamics simulations. The simulations predict that when placed on the top of a close-packed SAM, the molecules remain mobile on the surface with an isotropic diffusion activation energy of approximately 9 kJ/mol. In contrast, an anisotropic barrier that results from chain tilt within the SAM is predicted for diffusion into a defect created by reducing the alkane chain length within a cylinderical region of the surface. Once in the defect, the molecules become trapped by embedding part of the molecule into the side of the SAM. 相似文献
16.
The bonding network of an alkylsilane self-assembled monolayer (SAM)SiO(2) substrate interface is investigated by means of canonical Monte Carlo (MC) simulations. SAMSiO(2) systems with different interfacial bonding topologies are sampled by the Metropolis MC method, and the AMBER potential with a newly developed organosilicon parameters are used to obtain an optimized structure with a given bonding topology. The underlying substrates are modeled as hydroxy-terminated (100) or (111) cristobalites. The SAMSiO(2) interface is characterized by a polysiloxane bonding network which comprises anchoring bonds and cross-linking bonds, namely, molecule-substrate and molecule-molecule Si-O-Si bonds, respectively. We show that at thermal equilibrium, the ratio of the number of anchoring bonds to cross-linking bonds decreases as a total Si-O-Si bond density increases, and that nevertheless, number of anchoring bonds always dominate over that of cross-linking bonds. Moreover we show that the total Si-O-Si bond density strongly affects the lateral ordering of the alkylsilane molecules, and that increase in the Si-O-Si bond density disorders the molecular packing. Our results imply that a lab-to-lab variation in the experimentally prepared SAMs can be attributed to different Si-O-Si bond densities at the SAMSiO(2) interface. 相似文献
17.
Mass-selected peptide ions produced by electrospray ionization were deposited as ions by soft-landing (SL) onto fluorinated and hydrogenated self-assembled monolayer (FSAM and HSAM) surfaces using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying collisions of large ions with surfaces. Analysis of modified surfaces was performed in situ by combining 2 keV Cs(+) secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Similar SIMS spectra obtained following SL at different collision energies indicate that peptide fragmentation occurred in the analysis step (SIMS) rather than during ion deposition. The effect of the surface on SL was studied by comparing the efficiencies of SL on gold, FSAM, HSAM, and COOH-terminated SAM surfaces. It was found that FSAM surfaces are more efficient in retaining ions than their HSAM analogues, consistent with their larger polarizability. The efficiency of soft-landing of different peptides on the FSAM surface increases with the charge state of the ion, also consistent with an ion-polarizable molecule model for the initial stage of soft-landing on SAM surfaces. The gradual decrease of peptide ion deposition efficiency with an increase in collision energy found experimentally was quantitatively rationalized using the hard-cube model. 相似文献
18.
19.
Chen S Chen N Yan YL Liu T Yu Y Li Y Liu H Zhao YS Li Y 《Chemical communications (Cambridge, England)》2012,48(72):9011-9013
Controllable crystal aggregate structures which show highly uniform crystal tubule, rod and cubic like architectures were achieved and the well-defined microrods exhibit outstanding optical waveguide properties. 相似文献
20.
Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study. 相似文献