首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.  相似文献   

2.
The temperature dependence of spin coherence in InGaAs quantum dots is obtained from quantum beats observed in polarization-resolved pump-probe experiments. Within the same sample we clearly distinguish between coherent spin dynamics leading to quantum beats and incoherent long-lived spin-memory effects. Analysis of the coherent data using a theoretical model reveals approximately 10 times greater stability of the spin coherence at high temperature compared to that found previously for exciton states in four-wave-mixing experiments by Borri et al. [Phys. Rev. Lett. 87, 157401 (2001)]]. The data on incoherent polarization reveal a new form of spin memory based on charged quantum dots.  相似文献   

3.
We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state.  相似文献   

4.
We investigate the recombination dynamics of positively charged and neutral biexcitons and excitons in a single InAs/GaAs quantum dot (QD) within a two-dimensional (2D) photonic bandgap (PBG). The 2D PBG makes the exciton lifetime four times longer and enhances photon-extraction efficiency compared to those without the PBG. Photon cross-correlation measurements demonstrate the cascade emissions of both charged and neutral biexcitons–excitons from the same QD. In the charged case, a hole in the p-shell relaxes into the s-shell between the cascade, and the corresponding transition is confirmed based on the spin configuration. The long exciton lifetime with the PBG helps us to reveal the spin dynamics that did not clearly appear in intrinsic QDs.  相似文献   

5.
The method of few-body physics is applied to treating negatively charged excitons in a quantum disk. The energies of low-lying states of a negatively charged exciton are calculated for a few values of the electron-to-hole mass ratio. A new bound state of a negatively charged exciton in a quantum disk with orbital angular momentum L = 1 and the triplet state of the two bound electrons are predicted. The binding energy of a negatively charged exciton asfunction of disk radius for the heavy hole and the light hole is investigated.  相似文献   

6.
We report experimental studies on exciton spin coherence induced via Coulomb correlations between excitons with opposite spins, including correlations associated with unbound as well as bound exciton pairs. Electromagnetically induced transparency resulting from the spin coherence is demonstrated in the transient optical response in GaAs quantum wells.  相似文献   

7.
We explain the polarization dependence of four wave mixing (FWM) quantum beats for semiconductors as essentially due to the spin phase correlations of photo-excited electrons, rather than to Coulomb interaction between the electrons. A theoretical analysis is given within the framework of optical Bloch equations for the light–semiconductor interactions and the Luttinger–Kohn model for the band structure. Residual Coulomb interactions between charge carriers are ignored. The results suggest that the polarization dependence of FWM quantum beats is a purely coherent effect of dual photon excitations, rather than, e.g., exciton–exciton Coulomb interaction. We show that the coherence transfer between the excited states is responsible for the FWM in a configuration with orthogonally polarized pump and probe.  相似文献   

8.
The exciton states in a CdTe quantum ring subjected to an external magnetic field containing a single magnetic impurity are investigated. We have used the multiband approximation which includes the heavy hole–light hole coupling effects. The electron–hole spin interactions and the s, p–d interactions between the electron, the hole and the magnetic impurity are also included. The exciton energy levels and optical transitions are evaluated using the exact diagonalization scheme. We show that due to the spin interactions it is possible to change the bright exciton state into the dark state and vice versa with the help of a magnetic field. We propose a new route to experimentally estimate the s, p–d spin interaction constants.  相似文献   

9.
Single-photon interference is observed on the ultranarrow long-term stable exciton resonance of an individual semiconductor quantum dot. This interference is related to the fine-structure splitting and allows direct conclusions about the coherence properties of the exciton. When selectively addressing a particular dot by quasiresonant phonon-assisted excitation, despite a rapid orientation relaxation on a 1-ps time scale, coherence is partly maintained. No significant further decoherence occurs when the ground state is reached until the exciton recombines radiatively (approximately 300 ps).  相似文献   

10.
The time-resolved secondary emission of resonantly created excitons in GaAs quantum wells is studied using femtosecond up-conversion spectroscopy. The behaviour of the rise and decay of the secondary emission and reflectivity in quantum wells is strongly dependent upon the disorder at the interfaces, the exciton density and the temperature. In the case of low densities and temperatures the emission is independent of the exciton density and rises quadratically in time, in excellent agreement with recent theory for Rayleigh scattering from two-dimensional excitons subjected to disorder. These rise times are compared directly with times measured by time-integrated four-wave mixing (FWM). The comparison of the dynamics displayed in time-resolved secondary radiation and time-integrated FWM provide a clear understanding of the coherence properties of QW excitons in the first few picoseconds after excitation. High-contrast oscillations that are due to quantum beats between the heavy- and light-hole 1s-states are seen. The visibility decay at very low densities is long ps and is related to the action of potential fluctuations on the scattering of heavy-hole and light-hole excitons.  相似文献   

11.
The exciton spin dynamics in a quantum well with a magnetic field applied in its plane is analyzed theoretically. The exchange interaction between the electron and the hole is assumed to be strong. The width of the Hanle effect profile is shown to depend on the hole spin relaxation time. The intensity signal obtained under pulsed exciton generation as a function of time is characterized by two decay times, and the polarization signal, by a third time which is strongly dependent on the applied field.  相似文献   

12.
The Hamiltonian equation for positively charged exciton in double-layer harmonic quantum dots is solved numerically by using the exact diagonalization techniques. We find that the correlation energy Ec of positively charged exciton increases with increasing the confinement strength and the binding energy decreases obviously for the heavy hole.  相似文献   

13.
The Hamiltonian equation for positively charged exciton in double-layer harmonic quantum dots is solved numerically by using the exact diagonalization techniques. We find that the correlation energy Ec of positively charged exciton increases with increasing the confinement strength and the binding energy decreases obviously for the heavy hole.  相似文献   

14.
We report experimental studies of absorption quantum beats induced by electron spin coherence in GaAs quantum wells. Absorption quantum beats occur for strongly localized excitons, but nearly vanish for mobile excitons in the third order nonlinear optical response. Pronounced quantum beats for mobile excitons emerge in an unusual fifth order process. These results, along with a qualitative analysis based on the use of N-exciton eigenstates, elucidate how the manifestation of electron spin coherence in the excitonic nonlinear optical response can differ fundamentally from that in an atomic system.  相似文献   

15.
采用时间分辨圆偏振光抽运-探测光谱,研究9.6 K温度下本征GaAs中电子自旋相干弛豫动力学,发现反映电子自旋相干的吸收量子拍的振幅随光子能量的增加呈非单调性变化.考虑自旋极化依赖的带填充效应和带隙重整化效应,发展了圆偏振光抽运-探测光谱的理论模型.该模型表明量子拍的振幅依赖于所探测能级的电子初始自旋极化度,自旋探测灵敏度以及带填充因子,三者的乘积导致了量子拍振幅的非单调变化,与实验结果一致.给出了能级分裂的二能级系统中电子自旋极化度定义.发现在高能级上可以获得100%的初始电子自旋极化度. 关键词: 圆偏振光抽运-探测光谱 吸收量子拍 电子自旋极化度 GaAs  相似文献   

16.
The beats of the Stokes luminescence parameters in pillar semiconductor microcavities are theoretically analysed. The beats are originated by a slight in-plane anisotropy of the pillar. The influence of the coherence time of exciton polaritons on the decay rate of polarization oscillations of the emission of light by the cavity is revealed. This link is essential for studies of the dynamic properties of polariton condensates in pillar microcavities.  相似文献   

17.
We present a review of spin-dependent properties of excitons in semiconductor colloidal nanocrystals. The photoluminescences (PL) properties of neutral and charged excitons (trions) are compared. The mechanisms and the polarization of radiative recombination of a “dark” (spin-forbidden) exciton that determines the low-temperature PL of colloidal nanocrystals are discussed in detail. The radiative recombination of a dark exciton becomes possible as a result of simultaneous flips of the surface spin and electron spin in a dark exciton that leads to admixture of bright exciton states. This recombination mechanism is effective in the case of a disordered state of the spin system and is suppressed if the polaron ferromagnetic state forms. The conditions and various mechanisms of formation of the spin polaron state and possibilities of its experimental detection are discussed. The experimental and theoretical studies of magnetic field-induced circular polarization of PL in ensembles of colloidal nanocrystals are reviewed.  相似文献   

18.
Time-resolved Kerr (Faraday) rotation experiments allow for the observation of polariton spin beats in both InGaAs and CdMnTe quantum well (QW) microcavities. The existence of these beats is an unambiguous manifestation of the coherent energy exchange between exciton and photon components of polariton states created by a circularly polarized and spectrally wide femtosecond laser pulse. The polariton states are also shown to be split into a linearly polarized doublet. This splitting is responsible for the polarization transfer between linearly and circularly polarized states. In a highest-quality sample, the resulting spin dynamics could be detected.  相似文献   

19.
We study the effect of an electric field applied normal to the layers on the binding energy of charged excitons (or trions) in GaAs quantum wells. We find that, in contrast to the neutral exciton, their binding energy is sharply reduced by modest electric fields. The effect is stronger for the positively charged exciton than the negatively charged one. The ionisation of the excess carrier is explained by the field-induced polarisation of the electron and hole subband wave functions.  相似文献   

20.
Carrier recombination at the Si(100) c(4 x 2) surface and the underlying surface electronic structure is unraveled by a combination of two-photon photoemission and many-body perturbation theory: An electron excited to the silicon conduction band by a femtosecond infrared laser pulse scatters within 220 ps to the unoccupied surface band, needs 1.5 ps to jump to the band bottom via emission of optical phonons, and finally relaxes within 5 ps with an excited hole in the occupied surface band to form an exciton living for nanoseconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号