首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of thiophene on clean Al(1 1 1) at 90 and 130 K has been studied with X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) and work function measurements. Relatively weak chemisorption compared to adsorption on transition metals is indicated by minor changes in the valence spectrum in progressing from monolayer to multilayer thiophene, a modest work function change of −0.50 eV due to saturation dosing, and return of the work function and valence spectrum to that of clean Al(1 1 1) upon annealing at 210 K. The complementary experiment in which aluminum is thermally deposited on multilayer thiophene condensed on gold at 130 K has also been performed. XPS peak area analysis shows that metal doses less than 14×1015 atoms/cm2 result in penetration through the physisorbed thiophene, but higher doses lead to the gradual build up of metal throughout the organic layer. Persistence of the thiophene UPS valence features for metal doses of 50×1015 atoms/cm2 is consistent with penetration and aluminum island formation. For aluminum deposition on thiophene, charge transfer from aluminum is evidenced by metal-induced low binding energy components in the C 1s and S 2p spectra at 282.6 and 162.5 eV, respectively, and a shift in the Al 2p spectrum of 0.5 eV to higher binding energy compared to metallic aluminum. UPS also indicates progression of the frontier orbital toward the Fermi level as aluminum is deposited.  相似文献   

2.
Employing ultraviolet photoelectron spectroscopy (UPS, He I), the more surface sensitive metastable impact electron spectroscopy (MIES) and temperature programmed desorption (TPD) measurements of the adsorption properties of the pollutant trichloroethylene (TCE) on thin MgO(100) films, grown on a Mo(100) single crystal, have been investigated. From TPD spectra of different coverages it is concluded that TCE interacts only weakly with MgO, which is attributed to physisorption. For increasing coverages a change from one peak to two peaks in the TPD spectra, one at higher, the second at lower temperatures with respect to the single peak is detected. Additionally, the observation of a local minimum for the work function (WF) for both MIES and UPS spectra is presented. Such a local minimum has been reported previously for the adsorption of metals with outer s valence electrons on transition metal substrates and adsorption of metals with outer s valence electrons on metal oxide films. Herein, we present the first WF minimum observed for a system of organic molecules adsorbed on an insulating surface. Two different models are discussed in order to understand the presented results.  相似文献   

3.
We have studied the adsorption and desorption of thiophene on polycrystalline UO2 as function of coverage, over the temperature range 100-640 K, using X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) and electron stimulated desorption (ESD). Thiophene is found to adsorb molecularly on stoichiometric UO2. C 1s and S 2p XPS spectra are measured at different thiophene exposures and at different temperatures; they show no evidence for the presence of dissociation fragments, confirming that thiophene adsorbs and desorbs molecularly on a polycrystalline stoichiometric UO2 surface. The variation of the S 2p and C 1s intensity as function of exposure, together with ESD measurements of O+ as function of exposure, can be connected to the growth mode of a thiophene film on UO2; the thiophene film converts from a flat-lying configuration to an inclined structure as coverage increases. The effects of X-rays, UV, and electron irradiation on thiophene films have been studied in two different coverage regimes, monolayer and multilayer. Irradiation leads to a modification of thiophene films, and appreciable concentrations of species stable to 640 K are present on the surface for both regimes. The XPS results suggest that irradiation induces polymerization and oligomerization, as well as formation of thiolates and dissociation fragments of thiophene. The adsorption and reactivity of thiophene on defective UO2 surfaces have also been studied. The O vacancies and defects in the oxide surface cause cleavage of C-H and C-S bonds leading to the dissociation of thiophene at temperatures as low as 100 K. These results illustrate the important role played by O vacancies in the chemistry of thiophene over an oxide surface.  相似文献   

4.
The adsorption structure of 3-chlorothiophene on Cu(111) has been investigated using a combination of normal incidence X-ray standing wavefield absorption (NIXSW) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. For coverages up to saturation of the chemisorbed layer, the 3-chlorothiophene bonds through the S atom. The S atom adsorbs in an atop site with a Cu–S distance identical, within experimental error, to that observed for thiophene on the same substrate. From a combination of NEXAFS and NIXSW, thiophene was found to adsorb with the aromatic ring flat lying. From NIXSW measurements the S–Cl axis was found to be inclined by 12±2° from the surface. Whilst NEXAFS data suggested an orientation of 23±8° for the aromatic ring of 3-chlorothiophene. The Cl atom interacted only weakly with the substrate, with a Cl–surface distance longer than the Cu–Cl van der Waal separation.  相似文献   

5.
We have studied the interaction of pentacene with a Cu(1 1 1) surface using density functional theory (DFT) within a generalized gradient approximation (GGA) and the van der Waals density functional [vdW-DF, M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92 (2004) 246401]. The adsorption energy is accurately predicted by vdW-DF, while the equilibrium distances between pentacene and the metal substrate (ZC) are overestimated by both GGA and vdW-DF. The work function changes depend significantly on ZC. The experimental work function change can be successfully reproduced by GGA if the experimentally reported adsorption geometry is used, whereas the magnitude of the work function change is underestimated if calculated adsorption geometries are applied. We examined the IDIS model [H. Vázquez, R. Qszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, A. Kahn, Europhys. Lett. 65 (2004) 802] to compare it with the GGA results. The interface dipoles estimated by the IDIS model fairly agree with the GGA results, provided that the adsorption distance is large. On the other hand, they tend to deviate from the GGA results as the adsorption distance becomes smaller, where back donation from the metal surface to the adsorbate occurs. Our analysis reveals that at experimentally reported metal–organic distance, back donation is significant enough to induce polarization of pentacene molecules perpendicular to the surface, which leads to a reduction of the work function. Thus, at the experimentally reported metal–organic distance, the work function change estimated by a simple IDIS model deviates from that calculated by self-consistent GGA calculations. We also found that at the experimentally reported metal–organic distance, the transferred electrons create weak chemical bonds between pentacene and the Cu(1 1 1) surface, illustrating the reactive nature of pentacene.  相似文献   

6.
Adsorption of thiophene on the (1 0 0) surfaces of Ni, Cu, and Pd has been investigated by the ab initio density functional theory method (periodic DMol3). Several parallel and perpendicular adsorption geometries are examined in detail. For Ni(1 0 0), both dissociative and molecular adsorption structures are found with small difference in energy. Thiophene adsorbs only molecularly on Cu(1 0 0) and Pd(1 0 0). The most stable molecular adsorption structures on all the surfaces are quite similar, where thiophene adsorbs on top of a 4-fold hollow with the symmetry axis rotated 45° from the metal rows. These stable structures arise from a good matching of the thiophene molecule to the metal surfaces. The calculated adsorption geometries are in reasonable agreement with XAFS experiments.  相似文献   

7.
The influence of the “ytterbium nanofilm-single-crystal silicon substrate” interface on properties of the films has been investigated. It has been shown that, if the film thickness is less than 10 monolayers, the Friedel oscillations (standing waves of electron density) generated by the interface affect the work function of the films and the rate of adsorption of CO molecules on their surface. In turn, the CO molecules modify the electronic structure of ytterbium during adsorption on the surface of nanofilms by transforming ytterbium from the divalent to trivalent state. The completely filled layer of adsorbed CO molecules consists of two phases. The first phase is a two-dimensional gas whose molecules weakly interact with each other, but their lone electron pairs form a donor-acceptor bond with the Yb 5d level; as a result, this level is located below the Fermi level and the metal transforms into the trivalent state. After filling the two-dimensional phase, the second (island) phase, in which the CO molecule are bound by horizontal π-bonds, begins to grow. The formation of these bonds becomes possible due to the filling of 2π states in the molecules upon compaction of the adsorbed layer. The considered the adsorbed two-phase layer is responsible for the complete transition of ytterbium into the trivalent state.  相似文献   

8.
We have theoretically studied the adsorption of a thiophenethiolate (C4H3S-S) molecule on the Au(1 1 1) surface by first-principles calculations. It is found that the bridge site is the most stable adsorption site with the adsorption energy of 1.02 eV. In the optimized adsorption geometry, the bond between the head S atom and the connected C atom in the tail thiophene molecule is tilted by 57.2° from the surface normal. In addition, the adsorption of thiophenethiolate induces large relaxations of the surface Au atoms around it. Furthermore, weak interactions between the S atom in the tail thiophene ring and the Au atoms also contribute to the adsorption on the Au surface.  相似文献   

9.
The effect of an electrode material on electrical properties of a composite material based on super-high-molecular polyethylene (SHMPE) filled with carbon nanotubes has been studied using impedance spectroscopy. Using the method of replacing the sample by an equivalent electric circuit, it has been found that, depending on the electrode material, a blocking barrier with high active resistance and a space charge region adjacent to it arise in the interface region. It has been shown that the barrier height is controlled by surface electronic states of SHMPE and weakly depends on the electron work function of metal electrodes (Bardeen barrier). The characteristic times of electrical relaxation characterizing bulk and interface regions of the composite under study have been determined.  相似文献   

10.
Microcalorimetric measurements of the adsorption energies of well-defined surface species are reviewed, using selected examples mainly from our own group to demonstrate the types of information that can be achieved with this technique. The adsorption energies of molecules on single crystal transition metal surfaces to produce well-characterized molecular or dissociated adsorbates allow determination of the standard enthalpies of formation of key catalytic reaction intermediates. The adsorption energies for metal atoms during metal thin-film growth allow quantitative estimates of metal-substrate bond energies, metal film/substrate adhesion energies and the energetic costs associated with lattice mismatch during thin film growth. Results for several metals on MgO(1 0 0) reveal that they bind weakly to terrace sites. Metals from the right side of the periodic table also bind weakly to step and kink sites (although more strongly than on terraces), whereas alkali and alkaline earth metals bind very strongly to these defects. At 300 K, metals tend to form 2D or 3D clusters nucleated on MgO(1 0 0) defects, via a transiently adsorbed precursor (mobile adatoms on terraces). Calorimetric measurement of the energy of metal atoms in supported 3D metal nanoparticles as a function of particle size reveals a very strong size dependence below 6 nm diameter. Metal atoms also adsorb weakly on polymer surfaces and nucleate 3D metal particles, sometimes in kinetic competition with migration to and strong reaction with the more reactive, subsurface organic functional groups. Measurements of the energies for adsorbed proteins on calcium phosphate crystals, which have been structurally characterized by NMR, reveal extremely weak binding dominated by the entropy gained from release of organized water. These experimental measurements of the energies of well-defined adsorbates serve as benchmarks against which to compare theoretical computations for accuracy, thus enabling improvement upon quantum mechanical methods. Comparisons of calorimetric adsorption energies on single crystal surfaces with state-of-the-art DFT calculations show that the latter can often be in substantial (?20%) error.  相似文献   

11.
The growth kinetics of self-assembled monolayers (SAMs) of thiophene compounds on Au(111) surfaces was revealed by Fourier-transform infrared reflection absorption spectroscopy (FT-IR-RAS). Thiophene and terthiophene form well-ordered SAMs on Au(111) surfaces by immersing gold substrates into their ethanol solutions for ca. 15 h. Gibbs free energies for the adsorption processes of thiophene and terthiophene were found to be identical. However, the growth and molecular orientation of SAMs are different between two thiophene compounds. Terthiophene in SAMs orients parallel to the surface. The SAM growth of terthiophene obeys a time-dependent Langmuir scheme. On the other hand, the thiophene SAM undergoes a two-step growth process with unique molecular orientations. In the primary phase, thiophene assumes a parallel orientation on the Au(111) surface. In the second phase, thiophene is oriented close to the normal of the surface. The different growth process between thiophene and terthiophene is attributable to the topology of sulfur positions in the molecules. Received 23 May 2001 and Received in final form 11 February 2002  相似文献   

12.
Up to now most of the experimental work regarding the adsorption of organic molecules has been concerned with silicon. Here we study the interface formation on a III–V-semiconductor, GaAs(001). We show that reflectance anisotropy spectroscopy (RAS) is a sensitive technique for investigating the interface formation between organic molecules and semiconductor surfaces. With RAS it is possible to determine the surface reconstruction and the structural changes at the interface during the deposition of organic molecules. These changes and the underlying adsorption process are discussed here for the adsorption of cyclopentene on GaAs(001)c(4×4), (2×4) and (4×2). PACS 61.66.Hq; 72.80.Le; 34.50.Dy; 68.47.Fg  相似文献   

13.
The bimolecular processes of T-T annihilation and excimer formation of complex organic molecules adsorbed on semiconductor-dielectric structures are studied. The adsorption of molecules on a solid surface is ascertained to be island in character. It is found that the efficiency of bimolecular processes between adsorbed complex organic molecules is affected by the charge of slow traps on the semiconductor-dielectric interface, the oxide layer thickness, and the concentration of adsorbed water molecules.  相似文献   

14.
The initial stage of the adsorption of octithiophene (8T) molecules on a Cu(111) surface is investigated using a scanning tunneling microscope at room temperature. We find a characteristic molecular chain structure of 8T molecules on a terrace of the Cu(111) surface, which has not been reported so far for adsorption of oligothiophene molecules on metal surfaces. Up to the adsorption of 0.26 monolayer (ML), 8T molecules in the molecular chain align with their long axis parallel to the Cu<11-2> direction. With increasing coverage, there appear 8T molecules that align with their long axis parallel to the Cu<110> direction. The appearance of different molecular orientations is understood by the decrease of the number of the adsorption sites for extending the molecular chains. Fragments of 8T molecules, such as single thiophene molecules, are also observed in this work. They are trapped only at the step edges of the Cu(111) surface at the beginning and later trapped in a small Cu(111) region surrounded by 8T molecules.  相似文献   

15.
In this work, we performed density functional calculations to examine the molecular adsorption states of thiophene on β-SiC(0 0 1)-2×1 surface. A number of possible adsorption geometries are considered into two groups as the polymeric thiophene chain and the individual molecules covalently bonded onto the surface. The results show that the polymeric chain on the surface is the less stable adsorption case and individual arch like adsorption case structure is more stable than others. In all adsorption cases, the adsorbed SiC surfaces are characterized as different semiconductors.  相似文献   

16.
The structure of a rectangular TiO2 nanophase grown epitaxially on a Pt(1 1 1) substrate has been investigated by a combined experimental-theoretical approach. It is found that such nanophase is stoichiometric, incommensurate to the substrate and has the structure of a lepidocrocite layer. The film is weakly bound to the metal surface via the O atoms of the oxide layer and consequently it does not have a fully wetting behavior. Two almost iso-energetic structures have been found based on first principles DFT calculations, one characterized by a short and one by a long interface distance, this latter being energetically slightly preferred. However, when the strain due to lattice mismatch is accommodated on the Pt(1 1 1) substrate instead of the TiO2 film, only the long interface structure is found. The analysis of measured and computed valence band spectra and STM images supports the long interface, weakly interacting model.  相似文献   

17.
H2 interaction with thin Rh films deposited on Pyrex glass under UHV conditions has been studied by simultaneous measurement of work function changes ΔΦ and hydrogen pressure P, at selected constant temperatures: 78 and 298 K. Prior to the adsorption experiments the thin film topography was illustrated using the AFM and STM methods. The influence of hydrogen adsorption on the resistance of thin Rh film was examined in the course of an independent experiment. The number of sites accessible for adsorption on the thin Rh film surface was found determining population of oxygen adatoms within the monolayer at 78 K, when incorporation of these adspecies below the surface is negligible. It was established that at all examined temperatures hydrogen adsorption led to coverage Θ approaching 1 under equilibrium pressure below 10−3 Pa, increasing the work function. Under higher H2 pressure an additional uptake of hydrogen leading to Θ ∼ 1.68 at 298 K, and to Θ ∼ 2 at 78 K is reached. On this surface at low temperatures there exist weakly bound, reversibly adsorbed, positively charged adspecies characteristic for hydrogen adsorption on transition metal hydrides. The change of thin Rh film resistance caused by hydrogen adsorption was not measurable.  相似文献   

18.
The adsorption of thiophene (C4H4S) on the clean and sulfided Mo(100) crystal surface has been studied. A fraction of the adsorbed thiophene desorbs molecularly while the remainder decomposes upon heating, evolving H2 and leaving carbon and sulfur deposits on the surface. The reversibly adsorbed thiophene exhibits three distinct desorption peaks at 360, 230–290 and 163–174 K, corresponding to binding energies of 22, 13–16 and 7–9 kcal/mol respectively. Sulfur on the Mo(100) surface preferentially blocks the highest energy binding state and causes an increase in the amount of thiophene bound in the low binding energy, multilayer state. The thiophene decomposition reactions yield H2 desorption peaks in the temperature range 300–700 K. We estimate that 50–66% of the thiophene adsorbed to the clean Mo(100) decomposes. The decomposition reaction is blocked by the presence of c(2 × 2) islands of sulfur and is blocked completely at θs = 0.5, at which point thiophene adsorption is entirely reversible.  相似文献   

19.
The purpose of research on metals (M) deposited onto self-assembled monolayers (SAMs) is to understand the interactions between metal (M) and eventually metal oxide overlayers on well-ordered organic substrates. Application of M/SAM and inorganic/SAM research results to the understanding of real inorganic/ organic interfaces in vacuum and under environmental conditions can potentially play a key role in the development of advanced devices with stable interfacial properties. The M/SAM approach to interface research is delineated as a new subfield in surface science in the context of other approaches to inorganic/organic interface research. Current issues in M/SAM research are outlined, including chemical compound formation, the morphology (spreading, clustering, or penetration) of the metal species, the kinetics of the metal morphology, the effect of the metal on the degree of order in the SAM, and the rate of metal penetration into the SAM. Probes are recommended that are suitable for M/SAM research. The results of M/SAM studies to date are reviewed, and M/SAM combinations are ranked according to reactivity and penetration. Key probes for addressing gaps in the research results are identified. The effects of defects, disordering, air exposure, and X-ray and electron beam exposure on the experimental results to date are evaluated. Thus far, the results have successfully revealed qualitative relationships of M/SAM chemistry, temperature, and penetration. The chemical interactions that have been found are applicable to real M/polymer interfaces as formed in vacuum. It has yet to be shown that M/SAM research will yield quantitative understanding of interface formation or that M/SAM interfaces are entirely analogous to M/polymer interfaces in the details of interface formation. The future of this subfield of surface science lies in its expansion from M/SAM interfaces in vacuum to other inorganic/SAM interfaces in vacuum and, eventually, under environmental conditions.  相似文献   

20.
M. Knupfer  X. Liu 《Surface science》2006,600(18):3978-3981
We present a comparison of the energy levels at interfaces between different thiophene based organic semiconductors and gold. The thiophene materials are comprised of oligomers with different length and with additional saturated side chains. Our results demonstrate that the interface dipole at these interfaces is independent of the molecule length as well as of the substitution. In addition, the position of the Fermi level in the gap of the organic semiconductors indicates that these interfaces are not free from interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号