首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider Fermion systems on integer lattices. We establish the existence of dynamics for a class of long range interactions. The infinite volume ground states are considered. The equivalence of the variational principle and ground state conditions is proved for long range interactions. We also prove that any pure translationally invariant ground state of the gauge invariant algebra is extendible to a ground state of the full CAR algebra for the Hamiltonian with a chemical potential (equivalence of ensemble for canonical and ground canonical states at the zero temperature).  相似文献   

2.
High resolution photoconductivity and transmission spectra in p-InSb are obtained over a wide temperature range at magnetic fields from 9 to 100 kG using a CO2 laser. The low temperature results are described in terms of hole transitions from the acceptor ground state to excited states associated with free light-hole Landau states.  相似文献   

3.
The ground and low-lying vibrational states of nitric acid are observable with current instrumentation in the Earth’s thermal submillimeter atmospheric emission. Remote sensing continues to improve to higher sensitivity and future missions will allow these measurements with minimal integration time. Sensing of weaker spectral features will require signal averaging, and choices of spectral windows for these features will require knowledge of the higher vibrational states and rare isotopes of the strongly emitting species. Nearly comprehensive information on vibrational states and isotopically substituted species is now available from wide bandwidth scans of natural and isotopically enriched nitric acid. In this work, ground state rotational spectra of five isotopically substituted species of nitric acid are analyzed in the submillimeter spectral range. We present the Hamiltonian parameters necessary for prediction and identification of isotopic features across the nitric acid ground state rotational spectrum.  相似文献   

4.
张晓斐  张培  陈光平  董彪  谭仁兵  张首刚 《物理学报》2015,64(6):60302-060302
利用虚时演化方法研究了共心双环外势中具有偶极-偶极相互作用的两分量玻色-爱因斯坦凝聚体的基态结构, 探索了接触相互作用和长程各向异性的偶极-偶极相互作用对系统基态的影响. 研究发现, 偶极-偶极相互作用作为系统的又一调控参数, 可用于得到系统的不同的基态相, 并用于控制不同基态相间的转化.  相似文献   

5.
Oberst M  Vewinger F  Lvovsky AI 《Optics letters》2007,32(12):1755-1757
We demonstrate the preparation and probing of the coherence between the hyperfine ground states |S(1/2),F=1> and |5S(1/2),F=2> of the Rb87 isotope. The effects of various coherence control techniques, i.e., fractional stimulated Raman adiabatic passage and coherent population return, on the coherence are investigated. These techniques are implemented using nearly degenerate pump and Stokes lasers at 795 nm (Rb D1 transition), which couple the two hyperfine ground states via the excited state |5P(1/2),F=1> through a resonant two-photon process in which a coherent superposition of the two hyperfine ground states is established. The medium is probed by an additional weak laser, which generates a four-wave mixing signal proportional to the ground state coherence and allows us to monitor its evolution in time. The experimental data are compared with numerical simulations.  相似文献   

6.
We use the stochastic limit technique to predict a new phenomenon concerning a two-level atom with degenerate ground state interacting with a quantum field. We show, that the field drives the state of the atom to a stationary state, which is non-unique, but depends on the initial state of the system through some conserved quantities. This non uniqueness follows from the degeneracy of the ground state of the atom, and when the ground subspace is two-dimensional, the family of stationary states will depend on a one-dimensional parameter. Only one of the stationary states in this family is a pure state and it coincides with the known trapped state. This means that by controlling the initial state (input) we can control the final state (output). The quantum Markov semigroup obtained in the limit admits an invariant pure state, but it is not true that all the extremal invariant states are pure. This is an interesting phenomenon also from mathematical point of view and its meaning will be discussed in a future paper. PACS numbers: 31.15.-p, 31.15.Gy, 32.80.Pj, 32.80.Qk  相似文献   

7.
We construct a set of translation invariant pure states of a quantum spin chain, which is w -dense in the set of all translation invariant states of the chain. Each of the approximating states has exponential decay of correlations, and is the unique ground state of a finite range Hamiltonian with a spectral gap above the ground state energy.  相似文献   

8.
We study the two-body entanglement and mixture in a three-qubit XXZ spin chain in thermal equilibrium state at temperature T with an external magnetic field B. The effects of the magnetic field, the anisotropy and the temperature on the entanglement and mixture are considered. We show that the ground states in this system are fully characterized and distinguished by both entanglement and mixture. Thermal entanglement versus the mixture of all two-spin states is investigated. All pairwise states provide an upper bound on the entanglement for a fixed mixture, and some part of the boundary reaches the boundary allowed by physics. As a result, maximally entangled mixed states can be generated by controlling magnetic field and temperature. Especially, in the ground state of the whole system, the explicit forms of maximally entangled mixed states are given. The results provide a new way to generate maximally entangled mixed states and control entanglement.  相似文献   

9.
We use the vertex state model approach to construct optimum ground states for a large class of quantum spin-2 antiferromagnets on the square lattice. Optimum ground states are exact ground states of the model which minimize all local interaction operators. The ground state contains two continuous parameters and exhibits a second order phase transition from a disordered phase with exponentially decaying correlation functions to a Néel ordered phase. The behaviour is very similar to that of the corresponding ground state of a quantum spin-3/2 model on the hexagonal lattice, which has been investigated in an earlier paper. Received 8 April 1999  相似文献   

10.
The study on the relationship between the structure and spectroscopic properties of styrylquinolinium dyes were carried out by measuring the electronic visible absorption, steady-state and time-resolved fluorescence spectra of quinoline based hemicyanine dyes. The influence of the solvent on absorption and emission spectra and the solvatochromic properties, observed for both ground and first excited states, for all the dyes were applied for the evaluation of their excited state dipole moments. The ground state dipole moments of dyes under the study were established by applying ab initio calculations. The measured, using solvatochromic methods, excited state dipole moments of tested hemicyanines are in the range from 5.38 to 18.90 D and the change in the dipole moments caused by excitation were found to differ from 1.88 to 6.64 D. It was observed that for all tested dyes the dipole moments of the excited states were higher than those of a ground states. The fluorescence lifetime measurements with picosecond resolution was performed for entire series of hemicyanine dyes possessing different dialkylamino groups attached to the phenyl ring. The average lifetimes of the dye fluorescence, determined from the measured data by multi-order exponential decay curve fitting, were in the range from about 120 to 1200 ps at the fluorescence peak wavelength. The fluorescence lifetime measurements were performed for dyes in ethyl acetate solutions. The time-resolved fluorescence spectra measurements allowed to propose the mechanism of the dyes excited states deactivation.  相似文献   

11.
《Physics letters. A》1999,252(5):248-250
A simple variational wavefunction is proposed for calculating the energy of nodeless quantum states of a hydrogenic donor located at the centre of a spherical GaAs(Ga,Al)As quantum dot. Energies are calculated for the 1s, 2p and 3d states for a range of values of the radius of the quantum dot. The results are compared to the “exact” energies and for the ground state with the results obtained by using the wavefunction proposed by Porras-Montenegro and Perez-Merchancano [Phys. Rev. B 46 (1992) 9780]. For the range of quantum dot radii of practical interest, it is shown that the proposed wavefunction gives results of good accuracy. For the ground state, the results from the proposed wavefunction for R ≤ 4 are considerably better than those obtained from the wavefunction used by Porras-Montenegro and Perez-Merchancano.  相似文献   

12.
Coherent transient excitation of the spin ground states in singly charged quantum dots creates optically coupled and decoupled states of the electron spin. We demonstrate selective excitation from the spin ground states to the trion state through phase sensitive control of the spin coherence via these three states, leading to partial rotations of the spin vector. This progress lays the ground work for achieving complete ultrafast spin rotations.  相似文献   

13.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

14.
Y0.5Ca0.5BaCo4O7 contains kagomé layers of Co ions, whose spins are strongly coupled, with a Curie-Weiss temperature of -2200 K. At low temperature, T=1.2 K, our diffuse neutron scattering study with polarization analysis reveals characteristic spin correlations close to a predicted two-dimensional coplanar ground state with staggered chirality. The absence of three-dimensional long-range antiferromagnetic order indicates negligible coupling between the kagomé layers. The scattering intensities are consistent with high spin S=3/2 states of Co2+ in the kagomé layers and low spin S=0 states for Co3+ ions on interlayer sites. Our observations agree with previous Monte Carlo simulations indicating a ground state of effectively short range, staggered chiral spin order.  相似文献   

15.
230—245nm范围内Cl原子共振增强多光子电离光谱   总被引:1,自引:0,他引:1  
利用共振增强多光子电离--时间飞行质谱技术获得了Cl原子在230-245nm范围内的代振增强多光子电离光谱,共观察到26条谱线,其中5条是作者新观察到的,这些谱线对应从Cl原子基态到激发态的双光子跃迁。从中还观察到Cl原子在强电场中的Stark效应,发现在强场条件下,Cld原子绵基太^2P1/2^0和^2P3/2^0两能级之间的能工位移1.35cm^=1。而各电子激发态的Stark位移则大致相等,  相似文献   

16.
We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians, which are known to be matrix product states (MPS). To this end, we construct a class of 1D frustration-free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. Without the uniqueness of the ground state, the problem becomes NP complete, and thus for these Hamiltonians it cannot even be certified that the ground state has been found. This poses new bounds on convergence proofs for variational methods that use MPS.  相似文献   

17.
Recent experiments show that the superexchange interaction in molecular clusters containing transition metal ions A?=?NiII and B?=?WV, NbIV or MoV in some cases is antiferromagnetic, contrary to the conventional superexchange rules. To understand this anomaly, we develop a quantum many-body model Hamiltonian and solve it exactly using a valence bond (VB) approach. We identify the various model parameters which control the ground state spin in different clusters of the A-B system. We present quantum phase diagrams that delineate the high and low-spin ground states in the parameter space. We fit the spin gap to a spin Hamiltonian and extract the effective exchange constant within the experimentally observed range, for reasonable parameter values. We also find a region of intermediate spin ground state in the parameter space, in clusters of larger size. The spin spectrum of the microscopic model cannot be reproduced by a simple Heisenberg exchange Hamiltonian. The above microscopic model is generic and can also be employed to explain photomagnetism in the MoCu6 system. We solve the model for MoCu6 and find that ground state is degenerate and is spanned by the S?=?0,?1,?2 and 3 manifolds with doubly occupied Mo site corresponding to Mo(IV) and singly occupied Cu sites corresponding to Cu(II) configurations. In each of these spin spaces, we observe that there exist charge-transfer (CT) states at ≈3?eV above the ground state which are dipole coupled to the ground state. The transition dipole in the S?=?3 manifold is the largest for the CT excitations. Coupled with the fact that the density of states of the S?=?3 manifold is sparse, compared to other spin manifolds, we expect that the S?=?3 CT excited state to be long-lived, thereby explaining the experimentally observed photomagnetism in the MoCu6 system.  相似文献   

18.
We construct a set of exact ground states with a localized ferromagnetic domain wall and an extended spiral structure in a quasi-one-dimensional deformed flat-band Hubbard model. In the case of quarter filling, we show the uniqueness of the ground state with a fixed magnetization. The ground states with these structures are degenerate with the all-spin-up and all-spin-down states. This property of the degeneracy is the same as the domain wall solutions in the XXZ Heisenberg–Ising model. We derive a useful recursion relation for the normalization of the domain wall ground state. Using this recursion relation, we discuss the convergence of the ground state expectation values of arbitrary local operators in the infinite-volume limit. In the ground state of the infinite-volume system, the translational symmetry is spontaneously broken by this structure. We prove that the cluster property holds for the domain wall ground state and excited states. We also estimate bounds of the ground state expectation values of several observables, such as one- and two-point functions of spin and electron number density.  相似文献   

19.
In this Letter, a different method was given for calculating the energies of the magnetobipolarons confined in a parabolic QD (quantum dot). We introduced single-mode squeezed states transformation, which are based on the Lee-Low-Pines and Huybrechts (LLP-H) canonical transformations. This method can provide results not only for the ground state energy but also for the excited states energies. Moreover, it can be applied to the entire range of the electron-phonon coupling strength. Comparing with the results of the LLP-H transformations, we have obtained more accurate results for the ground state energy, excited states energies and binding energy of the bipolarons. It shows that the magnetic field and the quantum dot can facilitate the formation of the bipolarons when η is smaller than some value.  相似文献   

20.
We consider a polaron Hamiltonian in which not only the lattice and the electron-lattice interactions, but also the electron hopping term is affected by anharmonicity. We find that the one-electron ground states of this system are localized in a wide range of the parameter space. Furthermore, low energy excited states, generated either by additional momenta in the lattice sites or by appropriate initial electron conditions, lead to states constituted by a localized electron density and an associated lattice distortion, which move together through the system, at subsonic or supersonic velocities. Thus we investigate here the localized states above the ground state which correspond to moving electrons. We show that besides the stationary localized electron states (proper polaron states) there exist moving localized solectron states which can be easily excited. The evolution of these localized states suggests their potential as new carriers for fast electric charge transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号