首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate the effects of weak to moderate disorder on the T=0 Mott metal-insulator transition in two dimensions. Our model calculations demonstrate that the electronic states close to the Fermi energy become more spatially homogeneous in the critical region. Remarkably, the higher energy states show the opposite behavior: they display enhanced spatial inhomogeneity precisely in the close vicinity to the Mott transition. We suggest that such energy-resolved disorder screening is a generic property of disordered Mott systems.  相似文献   

2.
Analyses of standard current–voltage (IV) characteristics of disordered high-temperature superconductors (HTS) indicate that the vortex phase at high magnetic fields H should be an elastic vortex glass, where the vortex pinning barriers diverge at low current densities, whereas dc magnetization relaxation measurements reveal the presence of nondiverging (plastic) pinning barriers in a wide HT domain. We show that the different conclusions concerning the nature of the vortex phase at high H in disordered HTS seem to be due to the ordering effect of the driving force existing in various experiments.  相似文献   

3.
We show that, with increasing randomness, the spectral gap in a 2D Mott-Hubbard insulator is destroyed first at a disorder V(c1), while antiferromagnetism persists up to a higher V(c2). Most unexpectedly, between V(c1) and V(c2) the system is metallic and is sandwiched between the Mott insulator below V(c1) and the Anderson insulator above V(c2). The metal is formed when the spectral gap gets destroyed locally in regions where the disorder potential is high enough to overcome the interelectron repulsion. This generates puddles with enhanced charge fluctuations that percolate with increasing disorder, resulting in a spatially inhomogeneous metallic phase.  相似文献   

4.
We study the spreading of an initially localized wave packet in two nonlinear chains (discrete nonlinear Schr?dinger and quartic Klein-Gordon) with disorder. Previous studies suggest that there are many initial conditions such that the second moment of the norm and energy density distributions diverges with time. We find that the participation number of a wave packet does not diverge simultaneously. We prove this result analytically for norm-conserving models and strong enough nonlinearity. After long times we find a distribution of nondecaying yet interacting normal modes. The Fourier spectrum shows quasiperiodic dynamics. Assuming this result holds for any initially localized wave packet, we rule out the possibility of slow energy diffusion. The dynamical state could approach a quasiperiodic solution (Kolmogorov-Arnold-Moser torus) in the long time limit.  相似文献   

5.
6.
We study theoretically the Mott metal-insulator transition for a system of fermionic atoms confined in a three-dimensional optical lattice and a harmonic trap. We describe an inhomogeneous system of several thousand sites using an adaptation of dynamical mean-field theory solved efficiently with the numerical renormalization group method. Above a critical value of the on-site interaction, a Mott-insulating phase appears in the system. We investigate signatures of the Mott phase in the density profile and in time-of-flight experiments.  相似文献   

7.
This paper is intended to demonstrate that there is no need to revise the existing theory of the transport properties of disordered conductors in the so-called weak localization regime. In particular, we demonstrate explicitly that recent attempts to justify theoretically that the dephasing rate (extracted from the magnetoresistance) remains finite at zero temperature are based on a profoundly incorrect calculation. This demonstration is based on a straightforward evaluation of the effect of the electron-electron interaction on the weak localization correction to the conductivity of disordered metals. Using well controlled perturbation theory with the inverse conductance g as the small parameter, we show that this effect consists of two contributions. The first contribution comes from the processes with energy transfer smaller than the temperature, and is responsible for setting the energy scale for the magnetoresistance. The second contribution originates from the virtual processes with energy transfer larger than the temperature. It is shown that the latter processes have nothing to do with the dephasing, but rather manifest the second-order (in 1/g) correction to the conductance. This correction is calculated for the first time. The paper also contains a brief review of the existing experiments on the dephasing of electrons in disordered conductors and an extended qualitative discussion of the quantum corrections to the conductivity and to the density of electronic states in the weak localization regime.  相似文献   

8.
The interplay between site dilution and quantum fluctuations in S=1 Heisenberg antiferromagnets on the square lattice is investigated using quantum Monte Carlo simulations. Quantum fluctuations are tuned by a single-ion anisotropy D. In the clean limit, a sufficiently large D>Dc=5.65(2)J forces each spin into its mS=0 state, and thus destabilizes antiferromagnetic order. In the presence of site dilution, quantum fluctuations are found to destroy Néel order before the percolation threshold of the lattice is reached, if D exceeds a critical value D*=2.3(2)J. This mechanism opens up an extended quantum-disordered Mott-glass phase on the percolated lattice, characterized by a gapless spectrum and vanishing uniform susceptibility.  相似文献   

9.
10.
1D–3D crossover is investigated in the Gorkov-Dzyaloshinskii model of weakly coupled metallic chains using the multiplicative renormalization group method. A two-step scaling procedure is carried out using different approximations in the 1D and 3D regions with matching at the crossover temperature defined here. In those cases when the 1D charge density wave (CDW) susceptibility diverges as T → 0, CDW-type phase transition is found to occur in the 3D system. The critical temperature of the transition is calculated.  相似文献   

11.
12.
It is shown on the basis of the results of magnetic investigations for the example of the intercalated layered compounds Cr1/3−x NixTaS2 that in quasi-two-dimensional ferromagnets with competing exchange interactions there is no reentrant “ferromagnet-spin glass” phase transition all the way down to liquid-helium temperatures. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 2, 155–158 (25 January 1997)  相似文献   

13.
赵志刚  徐紫巍  李斌  刘楣 《物理学报》2009,58(8):5750-5756
采用电阻阻错结的无序二维约瑟夫森结阵列模型,数值研究超导薄膜中垂直磁场引起的涡旋运动.通过分析磁场激发产生的涡旋度Ne及低频电压噪声S0的变化特性,得到如下结论:在无序超导体中固定温度不变,随着磁场的减弱涡旋液态经过准有序的布拉格相,涡旋玻璃相重新进入到低磁场下的钉扎稀磁液相. 由于在涡旋玻璃相中,电流驱动下的噪声值表现出一个峰,表明系统处于无序与有序相互竞争的亚稳态,并且临界电流应有峰值效应. 计算得到噪声值的变化与Okuma等得到的无序超导MoxSi1-x膜实验现象一致,并能解释磁场降低引起的重新进入钉扎的稀磁液相行为. 关键词: 约瑟夫森结阵列 磁通玻璃 重新进入 峰值效应  相似文献   

14.
Non-additivity effects in coupled dynamic-stochastic systems are investigated. It is shown that there is a mapping of the replica approach to disordered systems with finite replica indexn on Tsallis non-extensive statistics, if the average thermodynamic entropy of the dynamic subsystem differs from the information entropy for the probability distribution in the stochastic subsystem. The entropic indexq is determined by the entropy difference ΔS. In the case of incomplete information, the entropic indexq=1−n is shown to be related to the degree of lost information.  相似文献   

15.
We consider a spin system with nearest-neighbor antiferromagnetic pair interactions in a two-dimensional lattice. We prove that the free energy of this system is differentiable with respect to the uniform external fieldh, for all temperatures and allh. This implies the absence of a first-order phase transition in this system.  相似文献   

16.
Using the dynamical mean field theory it is shown that interorbital Coulomb interactions in nonisotropic multiorbital materials give rise to a single Mott transition. Nevertheless, narrow and wide subbands exhibit different excitation spectra in the metallic and insulating phases. The close analogy between "multigap" insulating behavior and multigap superconductivity is pointed out.  相似文献   

17.
We calculate the effect of order parameter fluctuations on the fermionic single-particle excitations in the superfluid state of neutral fermions interacting with short-range attractive forces. We show that in dimensions D< or =3 the singular effective interaction between the fermions mediated by the gapless Bogoliubov-Anderson mode prohibits the existence of well-defined quasiparticles. We explicitly calculate the single-particle spectral function in the BEC regime in D=3 and show that in this case the quasiparticle residue and the density of states are logarithmically suppressed.  相似文献   

18.
The behavior of Fermi systems that approach the fermion condensation quantum phase transition (FCQPT) from the disordered phase is considered. We show that the quasiparticle effective mass M* diverges as M* ∝ 1/¦x?xFC¦, where x is the system density and xFC is the critical point at which FCQPT occurs. Such behavior is of general form and takes place in both three-dimensional (3D) and two-dimensional (2D) systems. Since the effective mass M* is finite, the system exhibits the Landau Fermi liquid behavior. At ¦x? xFC¦/xFC?1, the behavior can be viewed as highly correlated, because the effective mass is large and strongly depends on the density. In the case of electronic systems, the Wiedemann-Franz law is valid and the Kadowaki-Woods ratio is preserved. Beyond the region ¦xxFC¦/xFC?1, the effective mass is approximately constant and the system becomes a conventional Landau Fermi liquid.  相似文献   

19.
An Ising chain is considered with a potential of the formJ(i, j)/|ij|, where theJ(i, j) are independent random variables with mean zero. The chain contains both randomness and frustration, and serves to model a spin glass. A simple argument is provided to show that the system does not exhibit a phase transition at a positive temperature if>1. This is to be contrasted with a ferromagnetic interaction which requires>2. The basic idea is to prove that the surfacefree energy between two half-lines is finite, although the surface energy may be unbounded. Ford-dimensional systems, it is shown that the free energy does not depend on the specific boundary conditions if>(1/2)d.  相似文献   

20.
Fermionic atoms in two different hyperfine states confined in optical lattices show strong commensurability effects due to the interplay between the atomic density wave ordering and the lattice potential. We show that spatially separated regions of commensurable and incommensurable phases can coexist. The commensurability between the harmonic trap and the lattice sites can be used to control the amplitude of the atomic density waves in the central region of the trap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号