首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent experiments by Kantsler et al. [Phys. Rev. Lett. 99, 178102 (2007)10.1103/PhysRevLett.99.178102] have shown that the relaxational dynamics of a vesicle in external elongation flow is accompanied by the formation of wrinkles on a membrane. Motivated by these experiments we present a theory describing the dynamics of a wrinkled membrane. The formation of wrinkles is related to the dynamical instability induced by negative surface tension of the membrane. For quasispherical vesicles we perform analytical study of the wrinkle structure dynamics. We derive the expression for the instability threshold and identify three stages of the dynamics. The scaling laws for the temporal evolution of wrinkling wavelength and surface tension are established, confirmed numerically, and compared to experimental results.  相似文献   

2.
We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells.  相似文献   

3.
The dynamics of a compound vesicle (a lipid bilayer membrane enclosing a fluid with a suspended particle) in shear flow is investigated by using both numerical simulations and theoretical analysis. We find that the nonlinear hydrodynamic interaction between the inclusion and the confining membrane gives rise to new features of the vesicle dynamics: The transition from tank treading to tumbling can occur in the absence of any viscosity mismatch, and a vesicle can swing if the enclosed particle is nonspherical. Our results highlight the complex effects of internal cellular structures have on cell dynamics in microcirculatory flows. For example, parasites in malaria-infected erythrocytes increase cytoplasmic viscosity, which leads to increase in blood viscosity.  相似文献   

4.
A first-principles numerical model for crumpling of a stiff tethered membrane is introduced. This model displays wrinkles, ridge formation, ridge collapse, and initiation of stiffness divergence. The amplitude and wavelength of the wrinkles and the scaling exponent of the stiffness divergence are consistent with both theory and experiment. Close to the stiffness divergence further buckling is hindered by the nonzero thickness of the membrane, and its elastic behavior becomes similar to that of dry granular media. No change in the distribution of contact forces can be observed at the crossover, implying that the network of ridges is then simultaneously a granular force-chain network.  相似文献   

5.
Yi X  Shi X  Gao H 《Physical review letters》2011,107(9):098101
A fundamental understanding of cell-nanomaterial interaction is of essential importance to nanomedicine and safe applications of nanotechnology. Here we investigate the adhesive wrapping of a soft elastic vesicle by a lipid membrane. We show that there exist a maximum of five distinct wrapping phases based on the stability of full wrapping, partial wrapping, and no wrapping states. The wrapping phases depend on the vesicle size, adhesion energy, surface tension of membrane, and bending rigidity ratio between vesicle and membrane. These results are of immediate interest to the study of vesicular transport and endocytosis or phagocytosis of elastic particles into cells.  相似文献   

6.
The formation of wrinkles in thin membranes is a widespread phenomenon. In particular, wrinkles can appear in graphene, which is the thinnest natural membrane, and affect its properties. A region where wrinkles with different wavelengths are linked is called wrinklon. Conditions of the fixing of an elastically deformed graphene sheet dictate a certain wavelength of wrinkles near the fixed edge. Wrinkles with a longer wavelength become more energetically favorable with an increase in the distance from the edge. As a result, wrinklons appear and reduce the potential energy of the system by uniting wrinkles into larger wrinkles with an increase in the distance from the edge. The possibility of implementing various equilibrium configurations of wrinklons at given plane strains in graphene has been demonstrated by the molecular quasistatic method. The distributions of the energy and elastic strain components in wrinklons with various configurations for nanoribbons with different widths have been calculated.  相似文献   

7.
We study the general problem of the friction felt by a spherical solid particle which moves parallel to the membrane of a spherical vesicle. Experiments are carried out with SOPC vesicles at room temperature, with different particle and vesicle sizes. Experimental data show considerable finite-size effects whenever the particle is not very small compared to the vesicle. These effects are found consistent with the hydrodynamical theory of the vesicle-particle problem. This agreement allows for a “robust” determination of membrane viscosity, independently of particle and vesicle sizes. Received 4 January 1999 and Received in final form 11 May 1999  相似文献   

8.
夏彬凯  李剑锋  李卫华  张红东  邱枫 《物理学报》2013,62(24):248701-248701
将基于离散变分原理的耗散动力学模拟方法应用到三维囊泡体系,通过优化囊泡的弯曲能求解其平衡态形状. 该方法的优点之一是不需要预先假定对称性. 针对特定约化自发曲率的囊泡体系,该方法模拟获得了一系列轴对称形状,模拟结果与文献中预先假定轴对称条件的计算方法所报道的结果一致,这验证了该模拟方法的可靠性及精确性. 此外,使用该方法研究了两个差别巨大的平衡态形状之间的转变动力学,在转变过程中观察到了多个非轴对称的中间形状. 研究结果表明该方法不仅可以模拟囊泡的非轴对称结构,而且具备模拟囊泡在剧烈形变下演化过程的能力. 为研究更复杂的囊泡体系,特别是生物膜的形变提供了一个重要的理论模拟方法. 关键词: 生物膜 离散空间变分法 耗散动力学 三角网格划分  相似文献   

9.
Starting from a polymeric-fluid droplet, by vulcanization of the fluid free surface, curved elastic membranes, several nanometers thick and a few millimeters in diameter, which enclose a constant fluid volume, are produced. In an indentation-type test, carried out by pushing the membrane along its normal by means of a micro-needle, under some conditions, wrinkles are likely to appear around the contact region. Interestingly, we observe that the instability does not significantly alter the force-displacement relation: the relation between the force and the displacement remains linear and the associated stiffness is simply proportional to the tension of the membrane. In addition, we determine that the wrinkles develop when the stretching modulus of the membrane compares with its tension, which provides a useful method to estimate the elastic constant.  相似文献   

10.
Tank-treading, tumbling, and trembling are different types of the vesicle behavior in an external flow. We derive a dynamical equation enabling us to establish a state of nearly spherical vesicles. For a 2D external flow, the character of the vesicle dynamics is determined by two dimensionless parameters, depending on the vesicle excess area, fluid viscosities, membrane viscosity and bending modulus, strength of the flow, and ratio of the elongational and rotational components of the flow. The tank-treading to tumbling transition occurs via a saddle-node bifurcation, whereas the tank-treading to trembling transition occurs via a Hopf bifurcation. A slowdown of vesicle dynamics should be observed in a vicinity of a point separating the transition lines. We show that the slowdown can be described by a power law with two different critical exponents 1/4 and 1/2 corresponding to the slowdown of tumbling and trembling cycles.  相似文献   

11.
邓真渝  章林溪 《物理学报》2015,64(16):168201-168201
采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.  相似文献   

12.
We study experimentally the main features of wrinkles that form in an initially stretched and flat elastic membrane when subjected to an axi-symmetric traction force at the center. The wavelength and amplitude of the wrinkle pattern are accurately characterized as the membrane tension and the traction forced are varied. We show that wrinkles are the result of a supercritical instability and appear for a well-defined critical traction force that is a function of the membrane tension. Wrinkle length and amplitude increase as the traction force is increased further. By contrast, both quantities decrease as the membrane tension is increased. Calculations based on symmetry arguments and elastic-energy minimization are in good agreement with experiments and provide a simple way to investigate configurations that are difficult to access experimentally. Such problems include wrinkles in elastic nano-films on finite-thickness viscous substrates used in semiconductor technology or in cellular forces detection.Received: 10 August 2004, Published online: 19 October 2004PACS: 46.32. + x Static buckling and instability - 87.19.St Movement and locomotion - 85.40.Ls Metallization, contacts, interconnects; device isolationJ.-C. Géminard: Permanent address: Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 64, Allée dItalie, 69364 Lyon cedex 07, France  相似文献   

13.
蜂毒肽作为一种广谱抗菌肽已经得到广泛认知,用蜂毒肽构建载药体系攻击癌细胞研究正在兴起.基于仿生物膜模型探索其破坏机理,可以避免潜在活性细胞过程的影响.在此,我们选用细胞尺寸的单层巨囊泡膜模型,可在光学显微镜下直接观察和操作,获得仿正常细胞膜和仿癌细胞膜在不同蜂毒肽浓度刺激下的响应.研究得出,低浓度蜂毒肽诱导囊泡泄露实验表明中性磷脂囊泡以孔模式为主泄露,负电性磷脂囊泡以爆裂模式为主泄露;高浓度蜂毒肽诱导囊泡泄露实验表明负电性磷脂相较于中性磷脂可延迟蜂毒肽作用效果;蜂毒肽色氨酸残基荧光光谱表明囊泡膜表面蜂毒肽吸附量以及泄露模式依赖于磷脂组分.此外,推断了蜂毒肽对不同组分磷脂膜的破坏作用模型.研究为蜂毒肽在肿瘤细胞的作用机制及其衍生物的优化设计提供参考.  相似文献   

14.
The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.  相似文献   

15.
利用化学气相沉积法在抛光铜衬底上制备出六角形石墨烯晶畴, 并且在高温条件下对石墨烯晶畴进行氢气刻蚀, 利用光学显微镜和扫描电子显微镜对石墨烯晶畴进行观测, 发现高温条件下石墨烯晶畴表面能够被氢气刻蚀出网络状和线状结构的刻蚀条纹. 通过电子背散射衍射测试证明了刻蚀条纹的形态、密度与铜衬底的晶向有密切关系. 通过对比实验证明了石墨烯表面上的刻蚀条纹是由于石墨烯和铜衬底的热膨胀系数不同, 在降温过程中, 石墨烯表面形成了褶皱, 褶皱在高温氢气气氛下发生氢化反应形成的. 对转移到二氧化硅衬底的石墨烯晶畴进行原子力显微镜测试, 测试结果表明刻蚀条纹的形貌、密度与石墨烯表面褶皱的形貌、密度十分相似. 进一步证明了刻蚀条纹是由于褶皱结构被氢气刻蚀引起的. 实验结果表明, 即使在六角形石墨烯晶畴表面也存在褶皱和点缺陷. 本文提供了一种便捷的方法来观察铜衬底上石墨烯褶皱的分布与形态; 同时, 为进一步提高化学气相沉积法制备石墨烯的质量提供了更多参考.  相似文献   

16.
Membrane fusion is an important process in cell biology. While the molecular mechanisms of fusion are actively studied at a very local scale, the consequences of fusion at a larger scale on the shape and stability of the membrane are still not explored. In this Letter, the evolution of the membrane tension during the fusion of positive small unilamellar vesicles with a negative giant unilamellar vesicle has been experimentally investigated and compared to an existing theoretical model. The tension has been deduced using videomicroscopy from the measurement of the fluctuation spectrum and of the time correlation function of the fluctuations. We show that fusion induces a strong decrease in the effective tension of the membrane which eventually reaches negative values. Under these conditions, we show that localized instabilities appear on the vesicle. The membrane finally collapses, forming dense lipid structures.  相似文献   

17.
本文利用数值模拟研究了浮力对湍流预混V形火焰平均速度场的影响,发现浮力效应主要体现在远场区域,而在火焰刷附近非常有限;利用落塔和 OH-PLIF 方法在正常重力和微重力下观测了火焰皱褶,发现浮力压制火焰皱褶的程度与湍流强度密切相关。分析表明斜压机理是浮力影响火焰皱褶的重要原因。  相似文献   

18.
We have observed polymersomes of high genus with their vesicle wall organized on the micrometer scale either in a double bilayer connected by a lattice of passages or a tubular network with hexagonal symmetry. Experimentally found shape classes are identified within a theoretical phase diagram based on the bending energy of the polymer membrane. Pronounced morphological changes could be induced and controlled by temperature.  相似文献   

19.
Xin Wang 《中国物理 B》2023,32(1):16201-016201
Natural and artificially prepared nanorods' surfaces have proved to have good bactericidal effect and self-cleaning property. In order to investigate whether nanorods can kill the enveloped virus, like destroying bacterial cell, we study the interaction between nanorods and virus envelope by establishing the models of nanorods with different sizes as well as the planar membrane and vesicle under the Dry Martini force field of molecular dynamics simulation. The results show that owing to the van der Waals attraction between nanorods and the tail hydrocarbon chain groups of phospholipid molecules, the phospholipid molecules on virus envelope are adsorbed to nanorods on a large scale. This process will increase the surface tension of lipid membrane and reduce the order of lipid molecules, resulting in irreparable damage to planar lipid membrane. Nanorods with different diameters have different effects on vesicle envelope, the larger the diameter of nanorod, the weaker the van der Waals effect on the unit cross-sectional area is and the smaller the degree of vesicle deformation. There is synergy between the nanorods in the nanorod array, which can enhance the speed and scale of lipid adsorption. The vesicle adsorbed in the array are difficult to desorb, and even if desorbed, vesicle will be seriously damaged. The deformation rate of the vesicle adsorbed in the nanorod array exceeds 100%, implying that the nanorod array has a strong destructive effect on the vesicle. This preliminarily proves the feasibility of nanorod array on a surface against enveloped virus, and provides a reference for the design of corresponding nanorods surface.  相似文献   

20.
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain γ , which strongly attracts this membrane. If the vesicle is larger than the attractive γ domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the γ domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular γ domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular γ domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号