首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In order to study the magnetic anisotropy of transition metal ultrathin films, we have performed tight-binding calculations including spin-orbit coupling. Beside the anisotropy energy these calculations also yield the orbital moment, which turns out to be much more anisotropic than in bulk materials. The effects of interfacial mismatch and roughness are discussed within phenomenological models. We also briefly review experimental results on the magnetic surface anisotropy (MSA) in transition metal ultrathin films. In some cases such as Au/Co/Au(111) sandwiches the MSA wins the competition with the shape anisotropy arising from the magnetostatic energy: below a critical thickness this leads to aperpendicular spontaneous magnetization. We show the effects of this crossover on the hysteresis loops and on the magnetoresistance, and the effects of interface roughness on the critical thickness.  相似文献   

2.
We studied tetragonally distorted Fe(1-x)Co(x) alloy films on Rh(001), which show a strong perpendicular anisotropy in a wide thickness and composition range. Analyzing x-ray magnetic circular dichroism spectra at the L_(3,2) edges we found a dependence of the Co magnetic orbital moment on the chemical composition of the Fe(1-x)Co(x) alloy films, with a maximum at x=0.6. For this composition, we observed an out-of-plane easy axis of magnetization at room temperature for film thickness up to 15 monolayers. Since both the magnetic orbital moment and the anisotropy energy show similar composition dependence, it confirms that both quantities are directly related. Our experiments show that the adjustment of the Fermi level by a proper choice of the alloy composition is decisive for the large magnetic orbital moment and for a large magnetic anisotropy in a tetragonally distorted lattice.  相似文献   

3.
Guo  G. Y.  Ebert  H. 《Hyperfine Interactions》1996,97(1):11-18
A detailed theoretical study of the magnetic moments and magnetic hyperfine fields in several Fe multilayers (Fe fcc(001)/5X fcc(001), X=Cu and Ag, and Fe bcc(001)/5X fcc(001), X=Ag and Au) as well as in bulk Fe is presented. The calculations have been performed using the spin-polarized, relativistic linear muffin-tin orbital (SPR-LMTO) method of band structure calculation. Therefore, not only the contribution to the hyperfine fields due to the conventional Fermi contact interaction but also due to the spin dipolar and orbital contributions induced by the crystal field and by spin-orbit coupling are accounted for. To decompose the hyperfine field of non-s-electrons into these contributions it has been assumed that they are proportional to the corresponding so-called magnetic dipole moment and the orbital magnetic moment, respectively. In contrast to previous results for pure metals and alloys not only the orbital but also the spin dipolar hyperfine field was found to be non-negligible. The anisotropy of the hyperfine field determined by calculations for in-plane and perpendicular orientation of the magnetisation was found to be very pronounced and closely connected with the corresponding anisotropy of the magnetic dipole moment and the orbital moment.  相似文献   

4.
张慧云  王荫君 《中国物理》1994,3(10):780-787
Temperature dependences of effective perpendicular anisotropy (PA) Ku and inter-face energy Ks for Co/X(Pt, Au, Ag, Ni) multilayer films(MFs) as well as of spontaneous magnetization Ms for Co/Pt and Co/Au MFs are reported. The dependence of Ks on T dis-tinguishes between Go/Au, Co/Ni and Co/Pt, Co/Ag MFs, i.e., Ks of the former decreases with the increase of T, but it increases for the latter. Co/Pt MFs with the perpendicular anisotropy possess a large enhancement of Ms at low temperature, but there is not any en-hancement for Co/Au MFs. We have discussed the source of PA in Co/Au and Co/Pt MFs and speculated that the strain due to the lattice mismatch may be the main cause of PA in Co/Au MFs, but it is not for Co/Pt MFs.  相似文献   

5.
The role of size, structure and chemical order on the magnetic moments and magnetic anisotropy energy (MAE) of CoRh nanoparticles are studied in the framework of a self-consistent real-space tight-binding method. Our results show that a Rh core in a geometry having a large surface/volume ratio and with Co–Rh mixing at the interface is the most likely chemical arrangement. A local analysis reveals that the orbital and spin moments at the Co–Rh interface are largely responsible for the increase of the magnetic moments and magnetic anisotropy. Moreover, the local moments induced at the Rh atoms, which amount to about 20% of the moment per Co atom [ μRh = (0.2–0.3) μB] and the orbital moments of Co atoms play a crucial role on the interpretation of experiment. The results are discussed in the context of the interplay between chemical order and magnetic properties.  相似文献   

6.
Ab initio theoretical study of the quantum magnetic properties of Co nanowires on the pure and oxygen-reconstructed (1 × 2)/Au(110) and (1 × 2)/Pt(110) surfaces is performed. Their structures and electronic configurations are calculated using the electron density functional theory. High values of magnetic moment and magnetic anisotropy energies of Co atoms are found on both pure and oxygen-reconstructed (1 × 2)/Au(110) and (1 × 2)/Pt(110) surfaces. The adsorption of oxygen atoms on the (1 × 2)/Au(110) substrate is shown to affect the structural arrangement of Co nanowire atoms on this substrate and to increase the magnetic anisotropy energy (by 1.91 meV per nanowire atom). The adsorption of oxygen on the Pt(110) substrate substantially decreases the magnetic anisotropy energy of the Co nanowire on it (by 5.98 meV per atom). The origin of these changes is revealed by analyzing the local densities of states of the d electrons of nanowire atoms. The temperature ranges of the states with the lowest free surface energy are determined using the atomistic thermodynamics methods. These data and the available experimental data are used to predict the possibility of observing the structures under study in experiments.  相似文献   

7.
Jisang Hong 《Surface science》2006,600(11):2323-2328
Based on the full-potential linearized augmented plane wave (FLAPW) calculations, various magnetic properties of ultra thin face centered cubic (fcc) Co(0 0 1) film and V adsorbed systems on Co(0 0 1) surface are explored. It was found that the V film grown on fcc Co(0 0 1) surface has large induced magnetic moment and the direction of magnetization is antiparallel to that of Co atom in the submonolayer coverage. Very interestingly, we found that the surface alloy and 0.5 ML adsorbed V/Co(0 0 1) systems have perpendicular magnetocrystalline anisotropy and the magnitude of anisotropy energy in 0.5 ML V on fcc Co(0 0 1) surface is greatly larger than that of surface alloy, while we observed in-plane magnetization in pure fcc Co(0 0 1) film. It was found that the spin-orbit interaction through spin-flip process cannot be ignored, therefore the simple relation with orbital anisotropy is not applicable in the interpretation of magnetocrystalline anisotropy.  相似文献   

8.
用自旋极化的MS-Xα方法研究了稀土-过渡族化合物SmCo55的电子态密度、自 旋能级劈裂及原子磁矩.研究结果显示,由于化合物中Sm-Co间的轨道杂化效应,使Sm原子原来的5d00空轨道上占据了少量5d电子.由于Co(3d)-Sm(5d)电子间的直接交换作用,导致了Sm-Co间的磁性交换耦合,这是化合物中形成Sm-Co铁磁性长程序的一个重要原因.在SmCo55化合物中存在6个能级呈现负交换耦合,导致了SmCo55关键词: 电子结构 自旋极化 原子磁矩 交换耦合  相似文献   

9.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

10.
利用软x射线磁性圆二色(XMCD)吸收谱测得Fe/MgO膜不同磁化方向的轨道磁矩和自旋磁矩.实 验表明,沿铁单晶薄膜的不同方向,铁原子轨道磁矩的改变量达到600%以上,而自旋磁矩的 变化约50%,但原子的总磁矩没有如此大的改变.结合常规方法分析了铁薄膜的宏观磁各向异 性性质,半定量地获得磁矩与宏观各向异性能的关系,并对样品的磁矩和磁各向异性能进行 了比较. 关键词: x射线磁性圆二色 磁各向异性 磁性薄膜  相似文献   

11.
We find using local spin density approximation + Hubbard U band structure calculations that the novel one-dimensional cobaltate Ca3Co2O6 is not a ferromagnetic half-metal but a Mott insulator. Both the octahedral and the trigonal Co ions are formally trivalent, with the octahedral being in the low-spin and the trigonal in the high-spin state. The inclusion of the spin-orbit coupling leads to the occupation of the minority-spin d2 orbital for the unusually coordinated trigonal Co, producing a giant orbital moment (1.57 microB). It also results in an anomalously large magnetocrystalline anisotropy (of order 70 meV), elucidating why the magnetism is highly Ising-like. The role of the oxygen holes, carrying an induced magnetic moment of 0.13 microB per oxygen, for the exchange interactions is discussed.  相似文献   

12.
We measured geometric and magnetic properties of Co films on the Pd(1 1 1) surface by X-ray photoelectron diffraction (XPD), X-ray magnetic circular dichroism (MCD) at the Co L2,3 edge, and the surface magneto-optical Kerr effect (SMOKE) measurements. Co thin films are found to grow incoherently with fcc island structure on the smooth Pd(1 1 1) substrate. Comparison of MCD and SMOKE measurements of Co thin films grown on rough and smooth Pd(1 1 1) surfaces suggests that perpendicular remnant magnetization and Co orbital moment are enhanced by the rough interface. Pd capping layer also induces perpendicular orbital moment enhancement. These observations indicate the influence of hybridization between Co 3d and Pd 4d at the interface on the magnetic anisotropy.  相似文献   

13.
Mass-filtered cobalt clusters with a size of 8 nm have been deposited in-situ under soft-landing conditions onto Au(111). The spin and orbital moments of the Co nanoparticles on a Au (111) single crystal have been investigated as a function of the temperature using the element-specific method of X-ray magnetic circular dichroism in photoabsorption. The results hint at an temperature-dependent spin-reorientation transition which is discussed with respect to different contribution to the magnetic anisotropy. Furthermore, by means of an in-situ oxidation experiment, the influence of an exposure to oxygen on the properties of the cobalt clusters has been investigated.  相似文献   

14.
The structural and magnetic properties of TM_(13 )and TM_(13)@Au_(32 )clusters(TM=Mn,Co)are studied by firstprinciples calculations.We find that the Au_(32 )cluster can tune not only the magnetic moment but also the magnetic coupling properties between the TM atoms of the TM cluster.The Au_(32 )cluster can increase the net magnetic moment of Mn_(13 )clusters while reducing that of Co_(13 )clusters.The interaction between Au and Mn atoms induces more Mn atoms to form spin parallel coupling,resulting in an increase of the total magnetic moment of Mn_(13 )clusters,while for the Co_(13 )clusters,the interaction between Au and Co atoms does not change the magnetic coupling states between the Co atoms,but reduces the magnetic moment of the Co atoms,leading to a decrease of the total magnetic moment of this system.Our findings indicate that the encapsulation of Au_(32 )clusters can not only raise the chemical stability of TM clusters,but also can tune their magnetic coupling properties and magnetic moment,which enables such systems to be widely applied in fields of spintronics and medical science.  相似文献   

15.
Highly accurate soft-XMCD data recorded on a Nd2Fe14B single crystal, through the spin reorientation transition show that the average Fe orbital moment (a) is proportional to the macroscopic Fe anisotropy constant, and (b) diverges 15 K below the reorientation transition temperature. This divergence is indicative of a critical behavior and it is related to a tetragonal distortion. These results give experimental evidence of the mutual dependence between orbital moment, macroscopic magnetic anisotropy, and tetragonal distortion. Furthermore, it is argued that the critical behavior of the orbital moment is at the origin of similar divergences previously observed in Mossbauer and Hall-effect data.  相似文献   

16.
We show that bulk gold (Au) exhibits temperature-independent paramagnetism in an external magnetic field by x-ray magnetic circular dichroism spectroscopy at the Au L(2) and L(3) edges. Using the sum-rule analysis, we obtained a magnetic moment of 1.3 × 10(-4) μB/atom in an external magnetic field of 10 T and a paramagnetic susceptibility of 8.9 × 10(-6) for the 5d orbit. The induced paramagnetism in bulk Au is characterized by a large (≈ 30%) orbital contribution. This orbital component was retained even when Au atoms formed nanoparticles, playing an important role in stabilizing the spontaneous spin polarization in the Au nanoparticles.  相似文献   

17.
We report the first observation of the effects of exchange bias on the nuclear spin polarization and induced magnetic moments at a magnetic/non-magnetic interface, applying low temperature nuclear orientation (LTNO) to Co/Au(x)/CoO trilayer systems. This technique allows us to determine simultaneously the average alignment of the nuclear moments for the two radioactive probe isotopes 198Au and 60Co with respect to an external magnetic field axis. The total average Au γ-ray anisotropy measured was found (i) to decrease with increasing Au thickness, indicating that large hyperfine fields are restricted to the interfacial Au layers and (ii) to be canted away from the applied field axis even when the Co layers are magnetically saturated. This canting was found to originate at the CoO/Au interface as could be shown from comparative measurements on CoO/Au/CoO trilayers containing two AFM CoO/Au interfaces and on a Co/Au/Co trilayer with two FM Co/Au interfaces. In the case of CoO/Au/CoO, the observed canting was found to be dependent on the Au layer thickness.  相似文献   

18.
The spin echo NMR spectra of 59Co in R2(Co1-xMnx)17, (R = Y, Gd) measured at 4.2 K are reported. The large shift of resonance lines is observed, that is explained as caused by reorientation of easy axis of magnetisation from easy plane to easy direction (c axis). It is suggested to explain quantitatively the spectra, that only two of four Co sites (9d and 18f) in R2Co17 structure play a dominant role in determining of anisotropy energy and the Co atoms at the 6c sites (“dumb-bell” atoms) give no direct contribution to the anisotropy energy of the compound. The corresponding changes of local anisotropy energy and the orbital part of cobalt magnetic moment characteristic for each of cobalt structural sites are calculated and discussed.  相似文献   

19.
A theoretical study of the magnetic properties of the CoPt and FePt ordered alloys has been performed. The calculation is done as a function of the spin-quantization axis by means of both the local spin density and the generalized-gradient approximations in conjunction with the full-potential linear muffin–tin orbital method. Both approximations produced similar results for the FePt and CoPt compounds. The band structure and the total density of states have been calculated and it was confirmed that all electronic states contribute to the magneto-crystalline anisotropy energy; the magnetization axis is along the [0 0 1] direction. The Fe and Co orbital magnetic moments decrease with respect to the angle γ between the [0 0 1] axis and the spin quantization axis, but for the [1 0 0] axis the orbital moment is comparable to the [0 0 1] moment. The Pt orbital moments are of the same order of magnitude as those of Fe and Co moments due to the large spin–orbit splitting parameter of Pt and show a similar behavior with the angle γ.  相似文献   

20.
We report on the magnetic properties of two-dimensional Co nanoparticles arranged in macroscopically phase-coherent superlattices created by self-assembly on Au(788). Our particles have a density of 26 Tera/in2 (1 Tera=10(12)), are monodomain, and have uniaxial out-of-plane anisotropy. The distribution of the magnetic anisotropy energies has a half width at half maximum of 17%, a factor of 2 more narrow than the best results reported for superlattices of three-dimensional nanoparticles. Our data show the absence of magnetic interactions between the particles. Co/Au(788) thus constitutes an ideal model system to explore the ultimate density limit of magnetic recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号