首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of an extremely elongated electron diffusion region occurring during fast reconnection are presented. Cluster spacecraft in situ observations of an expanding reconnection exhaust reveal a broad current layer ( approximately 10 ion skin depths thick) supporting the reversal of the reconnecting magnetic field together with an intense current embedded at the center that is due to a super-Alfvénic electron outflow jet with transverse scale of approximately 9 electron skin depths. The electron jet extends at least 60 ion skin depths downstream from the X-line.  相似文献   

2.
Characteristics of the high-power reconnection heating were measured for the first time directly by two-dimensional measurements of ion and electron temperatures. While electrons are heated mainly inside the current sheet by the Ohmic heating power, ions are heated mainly by fast shock or viscosity damping of the reconnection outflow in the two downstream areas. The magnetic reconnection converts the energy of reconnecting magnetic field B(p) mostly to the ion thermal energy, indicating that the reconnection heating energy is proportional to B(p)(2).  相似文献   

3.
The nature of collisionless reconnection in a three-species plasma composed of a heavy species, protons, and electrons is examined. In addition to the usual two length scales present in two-species reconnection, there are two additional larger length scales in the system: one associated with a "heavy whistler" which produces a large scale quadrupolar out-of-plane magnetic field, and one associated with the "heavy Alfvén" wave which can slow the outflow speed and thus the reconnection rate. The consequences for reconnection with O+ present in the magnetotail are discussed.  相似文献   

4.
Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended "outer electron diffusion regions." New PIC simulations with an ion to electron mass ratio as large as 1836 (an H(+) plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.  相似文献   

5.
We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.  相似文献   

6.
Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{i}.  相似文献   

7.
Temperature gradients are shown to deform and shift the magnetic islands that grow during fast collisionless reconnection when electron inertia decouples the plasma motion from the magnetic field. A kinetic electron model describes the collisionless processes during the reconnection of field lines originating in regions with different temperatures. Using a novel model of the reconnecting instability as a surface mode, the kinetic effects are treated analytically in the linear and nonlinear stages of the instability of a current-carrying low-beta plasma slab in a strong magnetic guide field.  相似文献   

8.
Qian Zhang 《中国物理 B》2022,31(6):65203-065203
Relativistic magnetic reconnection (MR) driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional (3D) kinetic relativistic particle-in-cell (PIC) code. We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment. As the separation distance becomes larger, the magnetization parameter σ becomes smaller. The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance. Moreover, the collisionless shocks' contribution to energetic electrons is close to the magnetic reconnection contribution with σ decreasing, which results in a steeper electron energy spectrum. Basing on the 3D outflow momentum configuration, the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameter σ is very high in the 3D outflow area.  相似文献   

9.
郭俊  陆全明 《中国物理快报》2007,24(11):3199-3202
A 2 1/2-dimensional electromagnetic particle-in-cell (PIC) simulation code is used to investigate electron behaviour in collisionless magnetic reconnectfon. The results show that the ion/electron mass ratio (mi/me) almost has no impact on the reconnection rate, however it can significantly affect electron behaviour in the diffusion region. For the case with larger mass ratio, the width of electron current sheet becomes smaller and the outflow region along the separatrix is smaller, hence the peak of the electron outflow speed is essentially larger. Density cavities and the parallel electric field E// along the separatrix can be found in the case with larger mass ratio, which may have significant influences on the acceleration and heating of the electrons near the X point.  相似文献   

10.
Detailed measurements of spontaneous magnetic reconnection are presented. The experimental data, which were obtained in the new closed Versatile Toroidal Facility magnetic configuration, document the profile evolution of the plasma density, magnetic flux function, reconnection rate, and the current density during a spontaneous reconnection event in the presence of a strong guide magnetic field. The reconnection process is at first slow, which allows magnetic stress to build in the system while the current channel becomes increasingly narrow and intense. The onset of a fast reconnection event occurs as the width of the current channel approaches the ion-sound-Larmor radius rho s. During the reconnection event magnetically stored energy is channeled into energetic ion outflows and a rapid increase in the electron temperature.  相似文献   

11.
B. Coppi  B. Basu 《Physics letters. A》2018,382(6):400-404
An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.  相似文献   

12.
The growth of collisionless magnetic reconnection is discovered to be a nonlinear electron self-reinforcing process. Accelerated by the reconnection electric field, the small portion of energetic electrons in the vicinity of the X point are found to be the cause of the fast reconnection rate. This new mechanism explains that recent simulation results of different reconnection evolutions (i.e., steady state, quasisteady state, or nonsteady state) are essentially determined by the availability of feeding plasma inflows. Simulations are carried out with open boundary conditions.  相似文献   

13.
Using the largest three-dimensional particle-in-cell simulations to date, collisionless magnetic reconnection in large-scale electron-positron plasmas without a guide field is shown to involve complex interaction of tearing and kink modes. The reconnection onset is patchy and occurs at multiple sites which self-organize to form a single, large diffusion region. The diffusion region tends to elongate in the outflow direction and become unstable to secondary kinking and formation of "plasmoid-rope" structures with finite extent in the current direction. The secondary kink folds the reconnection current layer, while plasmoid ropes at times follow the folding of the current layer. The interplay between these secondary instabilities plays a key role in controlling the time-dependent reconnection rate in large-scale systems.  相似文献   

14.
A catastrophe model for the onset of fast magnetic reconnection is presented that suggests why plasma systems with magnetic free energy remain apparently stable for long times and then suddenly release their energy. For a given set of plasma parameters there are generally two stable reconnection solutions: a slow (Sweet-Parker) solution and a fast (Alfvénic) Hall reconnection solution. Below a critical resistivity the slow solution disappears and fast reconnection dominates. Scaling arguments predicting the two solutions and the critical resistivity are confirmed with two-fluid simulations.  相似文献   

15.
Anisotropic electron phase space distributions, f, measured by the Wind spacecraft in a rare crossing of a diffusion region in Earth's far magnetotail (60 Earth radii), are analyzed. We use the measured f to probe the electrostatic and magnetic geometry of the diffusion region. For the first time, the presence of a strong electrostatic potential (1 kV) within the ion diffusion region is revealed. This potential has far reaching implications for the reconnection process; it accounts for the observed acceleration of the unmagnetized ions out of the reconnection region and it causes all thermal electrons be trapped electrostatically. The trapped electron motion implies that the thermal part of the electron distributions are symmetric around v( parallel)=0: f(v( parallel),v( perpendicular)) approximately f(-v( parallel),v( perpendicular)). It follows that the field aligned currents in the diffusion region are limited and fast magnetic reconnection is mediated.  相似文献   

16.
Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfvén time.  相似文献   

17.
With the help of 2D-3V (two dimensional in space and three dimensional in velocity) Vlasov simulations we show that the magnetic field generated by the electromagnetic current filamentation instability develops magnetic islands due to the onset of a fast reconnection process that occurs on the electron dynamical time scale. This process is relevant to magnetic channel coalescence in relativistic laser plasma interactions.  相似文献   

18.
We give evidence for the first time of the onset of undriven fast, collisionless magnetic reconnection during the evolution of an initially homogeneous magnetic field advected in a sheared velocity field. We consider the interaction of the solar wind with the magnetospheric plasma at low latitude and show that reconnection takes place in the layer between adjacent vortices generated by the Kelvin-Helmholtz instability. This process generates coherent magnetic structures with a size comparable to the ion inertial scale, much smaller than the system dimensions but much larger than the electron inertial scale. These magnetic structures are further advected in the plasma in a complex pattern but remain stable over a time interval much longer than their formation time. These results can be crucial for the interpretation of satellite data showing coherent magnetic structures in the Earth's magnetosheath or the magnetotail.  相似文献   

19.
It is shown that the pattern of current layers formed within a magnetic island in the nonlinear phase of magnetic field line reconnection in a collisionless two-dimensional fluid plasma is subject to the onset of a secondary instability, the effect of which increases with decreasing electron temperature. In the cold electron limit the saturation of the island growth is accompanied by a turbulent redistribution of the current layers and by the development of long lived fluid vortices while, in the opposite limit, the current layer structure remains regular.  相似文献   

20.
Quanming Lu 《中国物理 B》2022,31(8):89401-089401
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection, the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region, in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm's law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth's magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号