首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl2-4SC(NH2)_{2} using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H_{c1} approximately 2 T and a upper critical field H_{c2} approximately 12 T. The results show a power-law temperature dependence of the phase transition line H_{c1}(T)-H_{c1}(0)=aT;{alpha} with alpha=1.47+/-0.10 and H_{c1}(0)=2.053 T, consistent with the 3D BEC universality class. Near H_{c2}, a kink was found in the phase boundary at approximately 150 mK.  相似文献   

2.
In this article, we construct the color-singlet-color-singlet type currents and the color-singlet-colorsinglet-color-singlet type currents to study the scalar D*■*, D*D* tetraquark molecular states and the vector D*D*■*, D*D*D* hexaquark molecular states with the QCD sum rules in details. In calculations, we choose the pertinent energy scales of the QCD spectral densities with the energy scale formula ■for the tetraquark and hexaquark molecular states respectively in a consistent way. We obtain stable QCD sum rules for the scalar D*■*, D*D*tetraquark molecular states and the vector D*D*■* hexaquark molecular state, but cannot obtain stable QCD sum rules for the vector D*D*D* hexaquark molecular state. The connected(nonfactorizable)Feynman diagrams at the tree level(or the lowest order) and their induced diagrams via substituting the quark lines make positive contributions for the scalar D*D* tetraquark molecular state, but make negative or destructive contributions for the vector D*D*D* hexaquark molecular state. It is of no use or meaningless to distinguish the factorizable and nonfactorizable properties of the Feynman diagrams in the color space in the operator product expansion so as to interpret them in terms of the hadronic observables, we can only obtain information about the short-distance and long-distance contributions.  相似文献   

3.
徐斌  程正则  易林  成泽 《中国物理》2007,16(12):3798-3802
With the help of ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculating the electronic structure and linear optical properties is carried out for XCd2(SO4)3 (X =Tl, Rb). The results show that Tl2Cd2(SO4)3 (TlCdS) has a larger band gap than Rb2Cd2(SO4)3 (RbCdS) and the energy bands for RbCdS are more dispersive than those of TlCdS. From their partial densities of states (PDOS), we have observed that the hybridization between S ionic 2p and O atomic 2p orbitals forms SO4 ionic groups. The remarkable difference between RbCdS and TlCdS is, however, the degree of hybridization between cation (Tl and Rb) and its surrounding oxygen atoms. In the view of quantum chemistry, the strong p-d hybridization indicates the existence of their cation ionic bonds (Cd-O, Rb-O, and Tl-O). The calculations of TlCdS and RbCdS show their optical properties to be less anisotropic. Their anisotropies in the optical properties mainly occur in a low photon energy region of 5-16 eV.  相似文献   

4.
Electron paramagnetic resonance measurements of NiCl2-4SC(NH2)_{2} reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k_{B}T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T > or = 1.5 K. Since the interchain coupling J_{ perpendicular}相似文献   

5.
Xiyu Chen 《中国物理 B》2022,31(4):47501-047501
Magnetic susceptibility, specific heat, and neutron powder diffraction measurements have been performed on polycrystalline Li$_{2}$Co(WO$_{4}$)$_{2}$ samples. Under zero magnetic field, two successive magnetic transitions at $T_{\rm N1}\sim 9.4$ K and $T_{\rm N2}\sim 7.4$ K are observed. The magnetic ordering temperatures gradually decrease as the magnetic field increases. Neutron diffraction reveals that Li$_{2}$Co(WO$_{4}$)$_{2}$ enters an incommensurate magnetic state with a temperature dependent $\bm k$ between $T_{\rm N1}$ and $T_{\rm N2}$. The magnetic propagation vector locks-in to a commensurate value $\bm k = (1/2, 1/4, 1/4)$ below $T_{\rm N2}$. The antiferromagnetic structure is refined at 1.7 K with Co$^{2+}$ magnetic moment 2.8(1) $\mu_{\rm B}$, consistent with our first-principles calculations.  相似文献   

6.
$\hbox {In}_{2}\hbox {S}_{3}$ thin films have been elaborated onto glass substrate by SILAR method at room temperature using different immersion time in the solution of cation and anion and fixing the rinsing time. The film composition, morphology and structure were investigated using energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and X-ray diffraction techniques. Optical properties, such transmission and band gap have been also analyzed. The effects of annealing on the morphological structure thin films are also described. The x-rays diffraction spectra indicated that the formed compounds are $\upbeta $ - $\hbox {In}_{2}\hbox {S}_{3}$ polycrystalline thin films with $\hbox {In}_{6}\hbox {S}_{7 }$ as second phase in sample S1 and sample S2 and no another phase in sample 3. SEM revealed homogeneous and relatively uniform films and EDAX shows sample 3 with S/In=1.44. For sample 1 and sample 2, we noted an increase of band gap when rinsing time increases.  相似文献   

7.
Applying a recently developed evaporation technique for refractory elements the following results have been obtained for Ta181 in an atomic beam magnetic resonance experiment studying the hyperfine structure of 3 levels of the ground state multiplet4 F: $$\begin{gathered} g_J (^4 F_{3/2} ) = 0.45024 (4) \hfill \\ \Delta v (^4 F_{3/2} ;F = 5 \leftrightarrow F = 4) = 1822.389 (6) MHz \hfill \\ \Delta v (^4 F_{3/2} ;F = 4 \leftrightarrow F = 3) = 2325.537 (2) MHz \hfill \\ \Delta v (^4 F_{5/2} ;F = 6 \leftrightarrow F = 5) = 1451.476 (7) MHz \hfill \\ \Delta v (^4 F_{5/2} ;F = 5 \leftrightarrow F = 4) = 1537.530 (8) MHz \hfill \\ \Delta v (^4 F_{5/2} ;F = 4 \leftrightarrow F = 3) = 1444.685 (2) MHz \hfill \\ \Delta v (^4 F_{7/2} ;F = 4 \leftrightarrow F = 3) = 1218.372 (2) MHz. \hfill \\ \end{gathered}$$ From these measurements the following constants of the magnetic dipole interaction (A) and the electric quadrupole interaction (B) have been derived: $$\begin{gathered} A (^4 F_{3/2} ) = 509.0801 (8) MHz \hfill \\ B (^4 F_{3/2} ) = - 1012.251 (8) MHz \hfill \\ A (^4 F_{5/2} ) = 313.4681 (8) MHz \hfill \\ B (^4 F_{5/2} ) = - 834.820 (12) MHz. \hfill \\ \end{gathered}$$   相似文献   

8.
We report a measurement of the time-dependent CP-asymmetry parameters S and C in color-suppressed B{0}-->D{(*)0}h{0} decays, where h{0} is a pi{0}, eta, or omega meson, and the decays to one of the CP eigenstates K+K-, K{S}{0}pi{0}, or K{S}{0}omega. The data sample consists of 383 x 10{6} Upsilon(4S)-->BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The results are S=-0.56+/-0.23+/-0.05 and C=-0.23+/-0.16+/-0.04, where the first error is statistical and the second is systematic.  相似文献   

9.
Owing to the significant difference between the experimental measurements and the theoretical predictions of the standard model (SM) for the value of \begin{document}$ {\cal{R}}(D) $\end{document} of the semileptonic decay \begin{document}$ B\to D\ell\bar{\nu}_{\ell} $\end{document}, researchers speculate that this decay may be evidence of new physics beyond the SM. Usually, the D-meson twist-2, 3 distribution amplitudes (DAs) \begin{document}$ \phi_{2;D}(x,\mu) $\end{document}, \begin{document}$ \phi_{3;D}^p(x,\mu) $\end{document} , and \begin{document}$ \phi_{3;D}^\sigma(x,\mu) $\end{document} are the main error sources when perturbative QCD factorization and light-cone QCD sum rules are used to study \begin{document}$ B\to D\ell\bar{\nu}_{\ell} $\end{document}. Therefore, it is important to obtain more reasonable and accurate behaviors for these DAs. Motivated by our previous work [Phys. Rev. D 104, no.1, 016021 (2021)] on pionic leading-twist DA, we revisit D-meson twist-2, 3 DAs \begin{document}$ \phi_{2;D}(x,\mu) $\end{document}, \begin{document}$ \phi_{3;D}^p(x,\mu) $\end{document}, and \begin{document}$ \phi_{3;D}^\sigma(x,\mu) $\end{document}. New sum rule formulae for the \begin{document}$\xi $\end{document}-moments of these three DAs are suggested for obtaining more accurate values. The light-cone harmonic oscillator models for the DAs are improved, and their parameters are determined by fitting the values of ξ-moments via the least squares method.  相似文献   

10.
We present a study of the polarization of the Upsilon(1S) and Upsilon(2S) states using a 1.3 fb;{-1} data sample collected by the D0 experiment in 2002-2006 during run II of the Fermilab Tevatron Collider. We measure the polarization parameter alpha=(sigma_{T}-2sigma_{L})/(sigma_{T}+2sigma_{L}), where sigma_{T} and sigma_{L} are the transversely and longitudinally polarized components of the production cross section, as a function of the transverse momentum (p_{T};{Upsilon}) for the Upsilon(1S) and Upsilon(2S). Significant p_{T};{Upsilon}-dependent longitudinal polarization is observed for the Upsilon(1S). A comparison with theoretical models is presented.  相似文献   

11.
By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.  相似文献   

12.
阎世英 《中国物理 B》2008,17(8):2925-2931
Density functional theory (DFT) (B3P86) of Gaussian 03 has been used to optimize the structure of the Cr2 molecule, a transition metal element molecule. The result shows that the ground state for the Cr2 molecule is a 13- multiple state, indicating that there exists a spin polarization effect in the Cr2 molecule. Meanwhile, we have not found any spin pollution because the wave function of the ground state does not mingle with wave functions of higher-energy states. So the ground state for Cr2 molecule being a 13-multiple state is indicative of spin polarization effect of the Cr2 molecule among transition metal elements, that is, there are 12 parallel spin electrons in the Cr2 molecule. The number of non-conjugated electrons is greatest. These electrons occupy different spatial orbitals so that the energy of the Cr2 molecule is minimized. It can be concluded that the effect of parallel spin in the Cr2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of the Cr2 molecule are derived. The dissociation energy De for the ground state of the Cr2 molecule is 0.1034eV, equilibrium bond length Re is 0.3396 nm, and vibration frequency we is 73.81cm^-1. Its force constants f2, f3 and f4 are 0.0835, -0.2831 and 0.3535 aJ. nm^-4 respectively. The other spectroscopic data for the ground state of the Cr2 molecule ωeχe, Be and αe are 1.2105, 0.0562 and 7.2938 x 10^-4cm^-1 respectively.  相似文献   

13.
Dong Yan 《中国物理 B》2022,31(3):37406-037406
The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr$_{2-x}$Al$_{x}$Te$_{4}$ ($0 \leqslant x \leqslant 0.2$). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature ($T_{\rm c}$) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when $x=0.075$. The value of normalized specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the highest $T_{\rm c}$ sample CuIr$_{1.925}$Al$_{0.075}$Te$_{4}$ was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of $T_{\rm c}$ vs. doping content.  相似文献   

14.
We report the first observation of a charmoniumlike state recoiling from the J/psi in the inclusive process e+e- -->J/psi+anything at a mass of (3.943+/-0.006+/-0.006) GeV/c{2}. We also observe the decay of this state into D*D[over ] and determine its intrinsic width to be less than 52 MeV/c{2} at the 90% C.L. These results are obtained from a 357 fb{-1} data sample collected with the Belle detector near the Upsilon(4S) resonance, at the KEKB asymmetric-energy e+e- collider.  相似文献   

15.
Jie Shen 《中国物理 B》2022,31(6):67105-067105
Geometrical frustration in low-dimensional magnetic systems has been an intriguing research aspect, where the suppression of conventional magnetic order may lead to exotic ground states such as spin glass or spin liquid. In this work we report the synthesis and magnetism study of the monocrystalline Mn$_2$Ga$_2$S$_5$, featuring both the van der Waals structure and a bilayered triangular Mn lattice. Magnetic susceptibility reveals a significant antiferromagnetic interaction with a Curie-Weiss temperature $\theta_{\rm w}\sim-260$ K and a high spin $S=5/2$ Mn$^{2+}$ state. However, no long range magnetic order has been found down to 2 K, and a spin freezing transition is found to occur at around 12 K well below its $\theta_{\rm w}$. This yields a frustration index of $f = -\theta_{\rm w}/T_{\rm f} \approx 22$, an indication that the system is highly frustrated. The absence of a double-peak structure in magnetic specific heat compared with the $TM_2$S$_4$ compounds implies that the spin freezing behavior in Mn$_2$Ga$_2$S$_5$ is a result of the competition between exchange interactions and the 2D crystalline structure. Our results suggest that the layered Mn$_2$Ga$_2$S$_5$ would be an excellent candidate for investigating the physics of 2D magnetism and spin disordered state.  相似文献   

16.
We construct a ${U_\hbar(\mathfrak{sp}(4))}$ -equivariant quantization of the four-dimensional complex sphere ${\mathbb{S}^4}$ regarded as a conjugacy class, Sp(4)/Sp(2) ×?Sp(2), of a simple complex group with non-Levi isotropy subgroup, through an operator realization of the quantum polynomial algebra ${\mathbb{C}_\hbar[\mathbb{S}^4]}$ on a highest weight module of ${U_\hbar(\mathfrak{sp}(4))}$ .  相似文献   

17.
Inclusive K_{S};{0}K_{S};{0} production in ep collisions at the DESY ep collider HERA was studied with the ZEUS detector using an integrated luminosity of 0.5 fb;{-1}. Enhancements in the mass spectrum were observed and are attributed to the production of f_{2}(1270)/a_{2};{0}(1320), f_{2};{'}(1525) and f_{0}(1710). Masses and widths were obtained using a fit which takes into account theoretical predictions based on SU(3) symmetry arguments, and are consistent with the Particle Data Group values. The f_{0}(1710) state, which has a mass consistent with a glueball candidate, was observed with a statistical significance of 5 standard deviations. However, if this state is the same as that seen in gammagamma-->K_{S};{0}K_{S};{0}, it is unlikely to be a pure glueball state.  相似文献   

18.
For a compact connected orientablen-manifoldM, n 3, we study the structure ofclassical superspace ,quantum superspace ,classical conformal superspace , andquantum conformal superspace . The study of the structure of these spaces is motivated by questions involving reduction of the usual canonical Hamiltonian formulation of general relativity to a non-degenerate Hamiltonian formulation, and to questions involving the quantization of the gravitational field. We show that if the degree of symmetry ofM is zero, thenS,S 0,C, andC 0 areilh orbifolds. The case of most importance for general relativity is dimensionn=3. In this case, assuming that the extended Poincaré conjecture is true, we show that quantum superspaceS 0 and quantum conformal superspaceC 0 are in factilh-manifolds. If, moreover,M is a Haken manifold, then quantum superspace and quantum conformal superspace arecontractible ilh-manifolds. In this case, there are no Gribov ambiguities for the configuration spacesS 0 andC 0. Our results are applicable to questions involving the problem of thereduction of Einstein's vacuum equations and to problems involving quantization of the gravitational field. For the problem of reduction, one searches for a way to reduce the canonical Hamiltonian formulation together with its constraint equations to an unconstrained Hamiltonian system on a reduced phase space. For the problem of quantum gravity, the spaceC 0 will play a natural role in any quantization procedure based on the use of conformal methods and the reduced Hamiltonian formulation.  相似文献   

19.
Chun-Mei Li 《中国物理 B》2022,31(5):56105-056105
The alloying and magnetic disordering effects on site occupation, elastic property, and phase stability of Co$_{2}Y$Ga ($Y={\rm Cr}$, V, and Ni) shape memory alloys are systematically investigated using the first-principles exact muffin-tin orbitals method. It is shown that with the increasing magnetic disordering degree $y$, their tetragonal shear elastic constant $C'$ (i.e., $(C_{11}-C_{12})/2$) of the $L2_{1}$ phase decreases whereas the elastic anisotropy $A$ increases, and upon tetragonal distortions the cubic phase gets more and more unstable. Co$_{2}$CrGa and Co$_{2}$VGa alloys with $y\geq0.2$ thus can show the martensitic transformation (MT) from $L2_{1}$ to $D0_{22}$ as well as Co$_{2}$NiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the ferromagnetism state, the excessive Ga atoms always tend to take the $Y$ sublattices, whereas the excessive Co atom favor the $Y$ sites when $Y={\rm Cr}$, and the excessive $Y$ atoms prefer the Co sites when $Y={\rm Ni}$. The Ga-deficient $Y={\rm V}$ alloys can also occur the MT at the ferromagnetism state by means of Co or V doping, and the MT temperature $T_{\rm M}$ should increase with their addition. In the corresponding ferromagnetism $Y={\rm Cr}$ alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from $D0_{22}$ to $L2_{1}$ is promoted and then $T_{\rm M}$ for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic state. At the ferromagnetism state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as $Y$ and Ga.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号