首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用全量子理论,对注入腔内的二能级原子、单模腔场和振动边界(视为频率为ωm的量子谐振子)构成的系统,在相互作用绘景中,求解了该系统的态函数随时间的演化关系,在此基础上得到了原子布居数随时间的演化关系,结果显示布居数在初始值附近振荡,这说明边界的振动是周期性的,它对原子布居数的影响也是周期性的. 关键词: 边界振动的微腔 二能级原子 布居数  相似文献   

2.
Trapping and cooling a mirror to its quantum mechanical ground state   总被引:1,自引:0,他引:1  
We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arrangements being used currently. For comparable parameters the three-mirror configuration provides a stiffer trap for the oscillating mirror. Furthermore, it prevents bistability from limiting the use of higher laser powers for mirror trapping, and also partially does so for mirror cooling. Lastly, it improves the isolation of the mirror from classical noise so that the quantum mechanical dynamics of the mirror become easier to observe. These improvements are expected to bring the task of achieving and detecting ground state occupation for the mirror closer to completion.  相似文献   

3.
The recurrence tracking microscope for probing nanostructures on a surface is based on the quantum recurrence phenomenon. We report that condensed atoms bouncing off on the atomic mirror, connected to a cantilever, modify the quantum recurrences. The times at which the recurrences occur depend on the initial energy of the bouncing condensates above the atomic mirror, which change with the density of condensed atoms.  相似文献   

4.
《Physics letters. A》2020,384(24):126592
Verification of macroscopic quantum mechanics requires that the position measurement accuracy of mirrors of various mass scales reach the Standard Quantum Limit (SQL) derived from Heisenberg's uncertainty principle. At mg-scale, thermal noise of the suspension wire of the mirror is an issue to reach the SQL. We propose to use a magnetic levitation system consisting of permanent magnets and yokes, noting the fact that a silica mirror is diamagnetic, and have succeeded in the experimental verification to levitate a 0.1-1 mg silica mass. This is the first demonstration of the levitation system with this mass scale and this magnetic susceptibility scale using permanent magnets as far as we know. We also estimated major noise sources for a 0.1 mg silica mirror and found the noise level to be lower than the SQL at 400 Hz-18 kHz. In conclusion, the levitation system of a mg-scale mirror for the use in a macroscopic quantum measurement was realized.  相似文献   

5.
By tightly focusing a laser field onto a single cold ion trapped in front of a far-distant dielectric mirror, we could observe a quantum electrodynamic effect whereby the ion behaves as the optical mirror of a Fabry-Pérot cavity. We show that the amplitude of the laser field is significantly altered due to a modification of the electromagnetic mode structure around the atom in a novel regime in which the laser intensity is already changed by the atom alone. We propose a direct application of this system as a quantum memory for single photons.  相似文献   

6.
We propose an experimentally feasible scheme to teleport an unkown quantum state onto the vibrational degree of freedom of a macroscopic mirror. The quantum channel between the two parties is established by exploiting radiation pressure effects.  相似文献   

7.
We show that quantum noise in very sensitive interferometric measurements such as gravitational-wave detectors can be drastically modified by quantum feedback. We present a new scheme based on active control to lock the motion of a mirror to a reference mirror at the quantum level. This simple technique allows one to reduce quantum effects of radiation pressure and to greatly enhance the sensitivity of the detection.  相似文献   

8.

The strong coupling between a macroscopic mechanical oscillator and a cavity field is essential for many quantum phenomena in a cavity optomechanical system. In this work, we discuss the normal mode splitting in a cavity optomechanical system with a cubic nonlinear movable mirror. We study how the mechanical nonlinearity affects the normal-mode splitting behavior of the movable mirror and the output field. We find that the mechanical nonlinearity can increase the peak separation in the spectra of the movable mirror and the output field. We also find that the heights and linewidths of the two peaks are very sensitive to the mechanical nonlinearity.

  相似文献   

9.
This paper is devoted to the study of a new atomic cavity consisting of a single horizontal concave mirror placed in the earth gravitational field. Gravity, by bending the atomic trajectories, plays the role of a second mirror closing the cavity. We first discuss the stability criterion for this cavity, assuming that the mirror has a parabolic shape. We then derive the quantum mechanical modes of such a configuration, with particular emphasis on the paraxial (i.e., close to vertical) motion. Finally, we discuss the possibility of populating those modes from an initial cold atomic cloud dropped above the mirror.Laboratoire associé au CNRS et à l'Université Pierre et Marie Curie  相似文献   

10.
In this paper, we revisit the problem of quantum entanglement in an oscillating macroscopic mirror previously studied by Marshall et al. consisting of a modified Michelson interferometer where one of the mirrors is free to oscillate about its center of mass. A photon incident upon the oscillating mirror becomes entangled with the mirror, driving the mirror into a superposition of quantum states. Once the photon and mirror decouple, the mirror returns to its initial state. The purpose of our investigations was to optimize the parameter regime, taking into consideration the current state of technology and the demands imposed by the need to maintain a stable environment in the presence of thermal noise. Optimization should not demand ultra-low temperatures and this is reflected in our results. Our results also show that if the separation between states is maintained at 10-14 m, the mirror size is reduced, making it easier to induce superposition in the mirror. The critical nature of mirror reflectivity and its connection to cavity decay rate was also revealed by our investigations. The results obtained through our investigations could be useful in quantum error correction, where decoherence negatively affects the results of computations performed by quantum computers. Finally, we note that we are only concerned with an isolated system, where no losses to the external environment occur and any decoherence that occurs within the system remains internal to the system; that is, any mention of decoherence refers specifically to recoverable decoherence.  相似文献   

11.
Towards quantum superpositions of a mirror   总被引:1,自引:0,他引:1  
We propose an experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that the experiment is within reach using a combination of state-of-the-art technologies.  相似文献   

12.
We propose a scheme utilizing a quantum interference phenomenon to switch the transport of atoms in a 1D optical lattice through a site containing an impurity atom. The impurity represents a qubit which in one spin state is transparent to the probe atoms, but in the other acts as a single atom mirror. This allows a single-shot quantum nondemolition measurement of the qubit spin.  相似文献   

13.
利用腔场与可移动镜子的作用制备两种非经典态   总被引:1,自引:1,他引:0  
吴龙泉  李洪才 《光子学报》2003,32(1):109-111
描述了在腔场与可移动镜子相互作用系统中,适当选择作用时间,可以制备单模腔场与镜子的纠缠态,或腔场的薛定谔猫态;通过调节腔场的长度、圆频率,以及镜子的质量、振动频率等宏观物理量,可以获得不同的量子态.  相似文献   

14.
An excited-state atom whose emitted light is backreflected by a distant mirror can experience trapping forces, because the presence of the mirror modifies both the electromagnetic vacuum field and the atom's own radiation reaction field. We demonstrate this mechanical action using a single trapped barium ion. We observe the trapping conditions to be notably altered when the distant mirror is translated across an optical wavelength. The well-localized barium ion enables the spatial dependence of the forces to be measured explicitly. The experiment has implications for quantum information processing and may be regarded as the most elementary optical tweezers.  相似文献   

15.
An imaging interferometer was created in a two-dimensional electron gas by reflecting electron waves emitted from a quantum point contact with a circular mirror. Images of electron flow obtained with a scanning probe microscope at liquid He temperatures show interference fringes when the mirror is energized. A quantum phase shifter was created by moving the mirror via its gate voltage, and an interferometric spectrometer can be formed by sweeping the tip over many wavelengths. Experiments and theory demonstrate that the interference signal is robust against thermal averaging.  相似文献   

16.
Using scanning probe techniques, we show the controlled manipulation of the radiation from single dipoles. In one experiment we study the modification of the fluorescence lifetime of a single molecular dipole in front of a movable silver mirror. A second experiment demonstrates the changing plasmon spectrum of a gold nanoparticle in front of a dielectric mirror. Comparison of our data with theoretical models allows determination of the quantum efficiency of each radiating dipole.  相似文献   

17.
A multifunctional semiconductor mirror that contains a saturable absorber based on quantum wells, a broadband reflector, and a Gires-Tournois interferometer that serves as a GVD compensator is designed and created. The mirror is fully characterized using the pump-probe technique with a subpicosecond resolution and the transmission and photoluminescence spectroscopy. The mirror that simultaneously executes the three functions and that is created in a single technological cycle provides stable mode-locking in the Nd3+:KGd(WO4)2 laser.  相似文献   

18.
Transfer of data in linear quantum registers can be significantly simplified with preengineered but not dynamically controlled interqubit couplings. We show how to implement a mirror inversion of the state of the register in each excitation subspace with respect to the center of the register. Our construction is especially appealing as it requires no dynamical control over individual interqubit interactions. If, however, individual control of the interactions is available then the mirror inversion operation can be performed on any substring of qubits in the register. In this case, a sequence of mirror inversions can generate any permutation of a quantum state of the involved qubits.  相似文献   

19.
We report on the demonstration of a high finesse micro-optomechanical system and identify potential applications ranging from optical cooling to weak force detection to massive quantum superpositions. The system consists of a high quality diameter flat dielectric mirror cut from a larger substrate with a focused ion beam and attached to an atomic force microscope cantilever. Cavity ring-down measurements performed on a 25 mm long Fabry-Pérot cavity with the 30 microm mirror at one end show an optical finesse of 2100. Numerical calculations show that the finesse is not diffraction limited and that orders of magnitude higher finesse should be possible. A mechanical quality factor of more than 10(5) at pressures below 10(-3) mbar is demonstrated for the cantilever with a mirror attached.  相似文献   

20.
We experimentally demonstrate the high-sensitivity optical monitoring of a micromechanical resonator and its cooling by active control. Coating a low-loss mirror upon the resonator, we have built an optomechanical sensor based on a very high-finesse cavity (30 000). We have measured the thermal noise of the resonator with a quantum-limited sensitivity at the 10(-19) m/sqrt[Hz] level, and cooled the resonator down to 5 K by a cold-damping technique. Applications of our setup range from quantum optics experiments to the experimental demonstration of the quantum ground state of a macroscopic mechanical resonator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号