首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate constant for the reaction of the cyanato radical, NCO(X2Pi), with the methyl radical, CH3(X2A2' '), has been measured to be (2.1 +/- 1.3(-0.80)) x 10(-10) cm3 molecule(-1) s(-1), where the uncertainty includes both random and systematic errors at the 68% confidence level. The measurements were conducted over a pressure range of 2.8-4.3 Torr of CH4 and at a temperature of 293 +/- 2 K. The radicals were generated by the 248-nm photolysis of ClNCO in a large excess of CH4. The subsequent rapid reaction, Cl + CH4, generated the CH3 radical. The rate constant for the Cl + CH4 reaction was measured to be (9.2 +/- 0.2) x 10(-14) cm3 molecule(-1) s(-1), where the uncertainty is the scatter of one standard deviation in the data. The progress of the reaction was followed by time-resolved infrared absorption spectroscopy on single rovibrational transitions from the ground vibrational level. Multiple species were detected in these experiments, including NCO, CH3, HCl, C2H6, HCN, HNC, NH, and HNCO. Temporal concentration profiles of the observed species were simulated using a kinetic model, and rate constants were determined by minimizing the sum of the squares of the residuals between experimental observations and model calculations. Both HCN and HNC seem to be minor products (<0.3% each) of the NCO + CH3 reaction. The peak concentrations of NH and HNCO were small, accounting for <1% of the initial NCO concentration; however, their temporal profiles could not be fit by the model kinetics. The observed C2H6 temporal profile always peaked at significantly higher concentrations than the model predictions, and several reaction models were constructed to help explain these observations. The most likely product channel seems to be the recombination channels, producing CH3NCO and CH3OCN.  相似文献   

2.
Vacuum ultraviolet (VUV) irradiation at wavelengths of lambda > 160 nm of urea-h4 (NH2CONH2) and urea-d4 (ND2COND2) has been monitored by Fourier transform infrared spectroscopy in argon and xenon matrixes. Several primary photoproducts, such as HNCO:NH3 (isocyanic acid:ammonia), CO:N2H4 (carbon monoxide:hydrazine) molecular complexes, and isourea (H2N(OH)C=NH), which is reported for the first time, were characterized. The assignment of complexes was achieved by co-depositing the pairs of respective species, whereas the isourea identification was based on the comparison between the experimental and theoretical (B3LYP) infrared spectra. Isourea is found in the argon matrix in its most stable (s-Z)-(E) configuration. It is an intermediate in the VUV decomposition process; its dehydration leads to the NH2CN:H2O complex. In the xenon matrix, the photochemistry of urea yields the HNCO:NH3 complex as a major product, whereas the CO:N2H4 complex is observed in trace amounts. The observed differences between the argon and xenon matrixes suggest the crossing between S1 and T1 potential surfaces of urea to be responsible for the formation of the HNCO:NH3 complex. A comparison is also performed with other carboxamides, such as formamide (HCONH2) or acetamide (CH3CONH2).  相似文献   

3.
The radical-molecule reaction mechanism of CH3 with NOx (x = 1, 2) has been explored theoretically at the B3LYP/6-311Gd,p and MC-QCISD (single-point) levels of theory. For the singlet potential energy surface (PES) of the CH3 + NO2 reaction, it is found that the carbon to middle nitrogen attack between CH3 and NO2 can form energy-rich adduct a (H3CNO2) with no barrier followed by isomerization to b1 (CH3ONO-trans), which can easily convert to b2 (CH3ONO-cis). Subsequently, starting from b (b1, b2), the most feasible pathway is the direct N-O bond cleavage of b (b1, b2) leading to P1 (CH3O + NO) or the 1,3-H-shift and N-O bond rupture of b1 to form P2 (CH2O + HNO), both of which may have comparable contribution to the reaction CH3 + NO2. Much less competitively, b2 can take a concerted H-shift and N-O bond cleavage to form product P3 (CH2O + HON). Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the CH3 + NO2 reaction is expected to be rapid, as is consistent with the experimental measurement in quality. For the singlet PES of the CH3 + NO reaction, the major product is found to be P1 (HCN + H2O), whereas the minor products are P2 (HNCO + H2) and P3 (HNC +H2O). The CH3 + NO reaction is predicted to be only of significance at high temperatures because the transition states involved in the most feasible pathways lie almost above the reactants. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. The present study may be helpful for further experimental investigation of the title reactions.  相似文献   

4.
采用密度泛函理论方法从HCN氧化和水解两个方面研究了HCN消除反应机理,并考虑了HCN的直接消除反应(途径Ⅰ和途径Ⅱ)和CuO上的HCN消除反应(途径Ⅲ和途径Ⅳ)。途径Ⅰ为HCN与2个O2分子生成CO2、NO和H原子;途径Ⅱ为HCN与1个O2分子和1个H2O分子生成 CO2和NH3;途径Ⅲ为CuO上HNCO水解为CO2和NH3;途径Ⅳ为CuO上HCN水解为CO和NH3。研究发现,途径III速控步骤的活化自由能垒为157.32 kJ/mol,比途径Ⅱ中HNCO水解降低12.34 kJ/mol;比途径Ⅳ降低了63.8 kJ/mol。可见,HNCO是HCN净化过程中的重要中间体,CuO的加入降低了反应能垒,促进了HCN消除。  相似文献   

5.
The thermal decompositions of methyl azidoformate (N3COOMe), ethyl azidoformate (N3COOEt) and 2-azido-N,N-dimethylacetamide (N3CH2CONMe2) have been studied by matrix isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2 appears as an initial pyrolysis product in all systems, and the principal interest lies in the fate of the accompanying organic fragment. For methyl azidoformate, four accompanying products were observed: HNCO, H2CO, CH2NH and CO2, and these are believed to arise as a result of two competing decomposition routes of a four-membered cyclic intermediate. Ethyl azidoformate pyrolysis yields four corresponding products: HNCO, MeCHO, MeCHNH and CO2, together with the five-membered-ring compound 2-oxazolidone. In contrast, the initial pyrolysis of 2-azido-N,N-dimethyl acetamide, yields the novel imine intermediate Me2NCOCH=NH, which subsequently decomposes into dimethyl formamide (HCONMe2), CO, Me2NH and HCN. This intermediate was detected by matrix isolation IR spectroscopy, and its identity confirmed both by a molecular orbital calculation of its IR spectrum, and by the temperature dependence and distribution of products in the PES and IR studies. Mechanisms are proposed for the formation and decomposition of all the products observed in these three systems, based on the experimental evidence and the results of supporting molecular orbital calculations.  相似文献   

6.
The complex doublet potential energy surface of the CHClNO system, including 31 minimum isomers and 84 transition states, is investigated at the QCISD(T)/6-311G(d, p)//B3LYP/6-31G(d, p) level in order to explore the possible reaction mechanism of the singlet CHCl with NO. Various possible isomerization and dissociation channels are probed. The initial association between 1CHCl and NO at the terminal N-site can almost barrierlessly lead to the chainlike adducts HClCNO a (a1, a2) followed by the direct Cl-extrusion to product P9 Cl + HCNO, which is the most feasible channel. Much less competitively, a (a1, a2) undergoes a ring-closure leading to the cyclic isomer c-C(HCl)NO d followed by a concerted Cl-shift and N-O cleavage of d to form the branched isomers ClNC(H)O f (f1, f2). Eventually, f (f1, f2) may take a direct H-extrusion to produce P7 H + ClNCO or a concerted 1,2-H-shift and Cl-extrusion to form P1 Cl + HNCO. The low-lying products P2 HCl + NCO, P3 Cl + HOCN, P14 HCO + 3NCl, P6 ClO + HCN, and P13 ClNC + OH may have the lowest yields observed. Our calculations show that the product distributions of the title reaction are quite different from those of the analogous 1CHF + NO reaction, yet are similar to those of another analogous 3CH2 + NO reaction. The similarities and discrepancies among the three reactions are discussed in terms of the substitution effect. The present article may assist in future experimental identification of the product distributions for the title reaction and may be helpful for understanding the halogenated carbene chemistry.  相似文献   

7.
The complex doublet potential energy surface of the CH(2)NO(2) system is investigated at the B3LYP/6-31G(d,p) and QCISD(T)/6-311G(d,p) (single-point) levels to explore the possible reaction mechanism of the triplet CH(2) radical with NO(2). Forty minimum isomers and 92 transition states are located. For the most relevant reaction pathways, the high-level QCISD(T)/6-311 + G(2df,2p) calculations are performed at the B3LYP/6-31G(d,p) geometries to accurately determine the energetics. It is found that the top attack of the (3)CH(2) radical at the N-atom of NO(2) first forms the branched open-chain H(2)CNO(2) a with no barrier followed by ring closure to give the three-membered ring isomer cC(H(2))ON-O b that will almost barrierlessly dissociate to product P(1) H(2)CO + NO. The lesser followed competitive channel is the 1,3-H-shift of a to isomer HCN(O)OH c, which will take subsequent cis-trans conversion and dissociation to P(2) OH + HCNO. The direct O-extrusion of a to product P(3) (3)O + H(2)CNO is even much less feasible. Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the title reaction is expected to be rapid, as is consistent with the measured large rate constant at room temperature. Formation of the other very low-lying dissociation products such as NH(2) + CO(2), OH + HNCO and H(2)O + NCO seems unlikely due to kinetic hindrance. Moreover, the (3)CH(2) attack at the end-O of NO(2) is a barrier-consumed process, and thus may only be of significance at very high temperatures. The reaction of the singlet CH(2) with NO(2) is also briefly discussed. Our calculated results may assist in future laboratory identification of the products of the title reaction.  相似文献   

8.
在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应·CHCHCH3+NO进行了计算, 并建立了其单重态的反应势能面. 在该反应中, 分别找到生成P1(CH3CHO+HCN), P2(CH3CHO+HNC), P3(CH3CN+HCHO), P4(CH3CCH+HNO)的4条产物通道, 其中·CHCHCH3和NO中的氮原子直接连接形成m1(trans-CH3CHCHNO), m1经过顺反异构形成m2(cis-CH3CHCHNO), m2再经过CCNO四元环合, 然后发生环解离, 最后生成产物P1(CH3CHO+HCN)是最可行的产物通道, 其余三条通道为次要产物通道. 该体系中生成P1的反应路径与同类体系·C2H3+NO的主要反应路径相类似, 两者的差别是前者为动力学可行的反应, 而后者为动力学不可行反应, 这使得·CHCHCH3+NO反应比·C2H3+NO反应更具有实际意义.  相似文献   

9.
Titan is the largest satellite of Saturn. In its atmosphere, CH4 is the most abundant neutral after nitrogen. In this paper, the complex doublet potential-energy surface related to the reaction between HCN+ and CH4 is investigated at the B3LYP/6-311G(d,p), CCSD(T)/6-311G++(3df,2pd)(single-point), and QCISD/6-311G(d,p) computational levels. A total of seven products are located on the PES. The initial association of HCN+ with CH4 is found to be a prereaction complex 1 (HCNHCH3(+)) without barrier. Starting from 1, the most feasible pathway is the direct H-abstraction process (the internal C-H bond dissociation) leading to the product P1 (HCNH++CH3). By C-C addition, prereaction complex 1 can form intermediate 2 (HNCHCH3(+)) and then lead to the product P2 (CH3CNH++H). The rate-controlling step of this process is only 25.6 kcal/mol. It makes the Path P2 (1) R --> 1 --> TS1/2 --> 2 --> TS2/P2 --> P2 another possible way for the reaction. P3 (HCNCH3(+) + H), P5 (cNCHCH2(+) + H2), and P6 (NCCH3(+) + H2) are exothermic products, but they have higher barriers (more than 40.0 kcal/mol); P4 (H + HCN + CH3(+)) and P7 (H + H2 + HCCNH+) are endothermic products. They should be discovered under different experimental or interstellar conditions. The present study may be helpful for investigating the analogous ion-molecule reaction in Titan's atmosphere.  相似文献   

10.
ESI and CID mass spectra were obtained for two purine nucleoside antiviral agents (acycloguanosine and vidarabine) and one purine nucleotide (vidarabine monophosphate) and the corresponding compounds in which the labile hydrogens were replaced by deuterium gas phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M+H](+) and [M -H](-) ions and the exchanged analogs, [M(Dx)+D](+) and [M(Dx)-D](-), produced by ESI using a Sciex API-IIIplus mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the CID mass spectra of the undeuterated and deuterated species. Protonated purine antiviral agents dissociate through rearrangement decompositions of base-protonated [M+H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the same bonds with charge retention on the sugar moiety gives low abundance ions, due to the low proton affinity of the sugar moiety compared to that of purine base. CID of protonated purine bases [B+H](+) occurs through two major pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). Deprotonated acycloguanosine and vidarabine exhibit the deprotonated base [B-H](-) as a major fragment from glycosidic bond cleavage and charge delocalization on the base. Deprotonated vidarabine monophosphate, however, shows predominantly phosphate related product ions. CID of deprotonated guanine shows two principal pathways: (1) elimination of NH(3) (ND(3)) and (2) loss of NH(2)CN (ND(2)CN). Minor pathways include elimination of HNCO (DNCO), loss of CO, and loss of HCN (DCN). The dissociation reactions of deprotonated adenine, however, proceed by elimination of HCN and (2) elimination of NCHNH (NCHND). The mass spectra of the antiviral agents studied in this paper may be useful in predicting reaction pathways in other heteroaromatic ring decompositions of nucleosides and nucleotides.  相似文献   

11.
The gaseous reaction of CH+NO2 has been investigated experimentally. CH radical was generated by multiple photon photolysis of CHBr3 at 248 nm. Vibrationally excited species of HCO (ν3), CO(v), CO2(ν3), HNO (ν1), OH(v) were detected as emitters of CH+NO2 reaction by time-resolved Fourier transform spectroscope. Three exothermic reaction channels leading to HCO+NO, NH+CO2, CO+HNO, are identified. The minor reaction leading to OH+NCO may also occur.  相似文献   

12.
Bond dissociation energies (BDEs) for complexes of ground state Mg+ (2S) with several small oxygen- and nitrogen-containing ligands (H2O, CO, CO2, H2CO, CH3OH, HCOOH, H2CCO, CH3CHO, c-C2H4O, H2CCHOH, CH3CH2OH, CH3OCH3, NH3, HCN, H2CNH, CH3NH2, CH3CN, CH3CH2NH2, (CH3)2NH, H2NCN, and HCONH2) have been calculated at the CP-dG2thaw level of theory. These BDE values, as well as counterpoise-corrected MP2(thaw)/6-311+G(2df,p) calculations on the Mg+ complexes of several larger ligands, augment and complement existing experimental or theoretical determinations of gas-phase Mg+/ligand bond strengths. The reaction kinetics of complex formation are also investigated via variational transition state theory (VTST) calculations using the computed ligand and molecular ion parameters. Radiative association rate coefficients for most of these systems increase by approximately 1 order of magnitude with every 3-fold reduction in temperature from 300 to 10 K. Several of the largest molecules surveyed-notably, CH3COOH, (CH3)2CO, and CH3CH2CN-exhibit comparatively efficient radiative association with Mg+ (k(RA) > or = 1.0 x 10(-10) cm3 molecule(-1) s(-1)) at temperatures as high as 100 K, implying that these processes may have a considerable influence on the metal ion chemistry of warm molecular astrophysical environments known to contain these potential ligands. Our calculations also identify the infrared chromophoric brightness of various functional groups as a significant factor influencing the efficiency of the radiative association process.  相似文献   

13.
The complex doublet potential energy surface for the ion-molecule reaction of HCN(+) with C(2)H(4) is investigated at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels. The initial association between HCN(+) and C(2)H(4) forms three energy-rich addition intermediates, 1 (HCNCH(2)CH(2)(+)), 2 (HC-cNCH(2)CH(2)(+)), and 3 (N-cCHCH(2)CH(2)(+)), which are predicted to undergo subsequent isomerization and decomposition steps. A total of nine kinds of dissociation products, including P(1) (HCN + C(2)H(4)(+)), P(2) (HCNCHCH(2)(+) + H), P(3) (NCCH(2) + CH(3)(+)), P(4) (CN + C(2)H(5)(+)), P(5) (NCCHCH(2)(+) + H(2)), P(6) (HNCCHCH(2)(+) + H), P(7) (c-CHCCH(2)N(+) + H(2)), P(8) (c-NHCCH(2)C(+) + H(2)), and P(9) (HNCCCH(+) + H(2) + H), are obtained. Among the nine products, P(1) is the most abundant product. P(2) is the second feasible product but is much less competitive than P(1). P(3), P(4), P(5), and P(6) may have the lowest yields observed. Other products, P(7), P(8), and P(9), may become feasible at high temperature. Because the intermediates and transition states involved in the most favorable pathway all lie below the reactant, the HCN(+) + C(2)H(4) reaction is expected to be rapid, which is confirmed by experiment. The present calculation results may provide a useful guide for understanding the mechanism of HCN(+) toward other unsaturated hydrocarbons.  相似文献   

14.
CH3+HNCO反应机理的理论研究   总被引:4,自引:0,他引:4  
在6-311++G**基组水平上,采用UMP2方法对自由基CH3与HNCO反应机理进行了研究,全参数优化了反应通道上各驻点的几何构型.结果表明, 自由基CH3与HNCO分子间反应有三条反应通道,第一为CH3与HNCO分子间经过生成一个稳定化能为4.56 kJ•mol-1的含氢键的分子复合物M后,经过渡态TS生成另一个产物复合物M′,然后分解为甲烷和NCO自由基;第二是CH3与HNCO分子间通过生成稳定反式中间体trans-int,其经过渡态trans-ts分解成产物CH3NH和CO;第三是CH3与HNCO分子间通过生成稳定顺式中间体cis-int,其经过渡态cis-ts分解成产物CH3NH和CO.比较三条反应通道的反应活化能,表明CH3与HNCO反应较易生成CH4+NCO.  相似文献   

15.
The crossed molecular beam scattering technique with soft electron ionization (EI) is used to disentangle the complex dynamics of the polyatomic O(3P) + C2H4 reaction, which is of great relevance in combustion and atmospheric chemistry. Exploiting the newly developed capability of attaining universal product detection by using soft EI, at a collision energy of 54.0 kJ mol(-1), five different primary products have been identified, which correspond to the five exoergic competing channels leading to CH2CHO(vinoxy) + H, CH3CO(acetyl) + H, CH3(methyl) + HCO(formyl), CH2(methylene) + HCHO(formaldehyde), and CH2CO(ketene) + H2. From laboratory product angular and velocity distributions, center-of-mass product angular and translational energy distributions and the relative branching ratios for each channel have been obtained, affording an unprecedented characterization of this important reaction.  相似文献   

16.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

17.
HNCO is a convenient photolytic source of NCO and NH radicals for laboratory kinetics studies of elementary reaction[1] and plays an important role in the combustion and atmosphere chemistry. It can re- move deleterious compounds rapidly from exhausted ga…  相似文献   

18.
By using time-resolved Fourier-transform infrared emission spectroscopy, the fragments of HCN(v = 1, 2) and CO(v = 1-3) are detected in one-photon dissociation of acetyl cyanide (CH(3)COCN) at 308 nm. The S(1)(A(")), (1)(n(O), π(?) (CO)) state at 308 nm has a radiative lifetime of 0.46 ± 0.01 μs, long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of Ar collision-induced internal conversion is estimated to be (1-7) × 10(-12) cm(3) molecule(-1) s(-1). The measurements of O(2) dependence exclude the production possibility of these fragments via intersystem crossing. The high-resolution spectra of HCN and CO are analyzed to determine the ro-vibrational energy deposition of 81 ± 7 and 32 ± 3 kJ∕mol, respectively. With the aid of ab initio calculations, a two-body dissociation on the energetic ground state is favored leading to HCN + CH(2)CO, in which the CH(2)CO moiety may further undergo secondary dissociation to release CO. The production of CO(2) in the reaction with O(2) confirms existence of CH(2) and a secondary reaction product of CO. The HNC fragment is identified but cannot be assigned, as restricted to a poor signal-to-noise ratio. Because of insufficient excitation energy at 308 nm, the CN and CH(3) fragments that dominate the dissociation products at 193 nm are not detected.  相似文献   

19.
The rate constant and product branching ratios for the reaction of the cyanato radical, NCO(X (2)Pi), with the ethyl radical, C(2)H(5)(X (2)A'), have been measured over the pressure range of 0.28 to 0.59 kPa and at a temperature of 293 +/- 2 K. The total rate constant, k(1), increased with pressure, P(kPa), described by k(1) = (1.25 +/- 0.16) x 10(-10) + (4.22 +/- 0.35) x 10(-10)P cm(3) molecule(-1) s(-1). Three product channels were observed that were not pressure dependent: (1a) HNCO + C(2)H(4), k(1a) = (1.1 +/- 0.16) x 10(-10), (1b) HONC + C(2)H(4), k(1b) = (2.9 +/- 1.3) x 10(-11), (1c) HCN + C(2)H(4)O, k(1c) = (8.7 +/- 1.5) x 10(-13), with units cm(3) molecule(-1) s(-1) and uncertainties of one-standard deviation in the scatter of the data. The pressure dependence was attributed to a forth channel, (1d), forming recombination products C(2)H(5)NCO and/or C(2)H(5)OCN, with pressure dependence: (1d) k(1d) = (0.090 +/- 1.3) x 10(-11) + (3.91 +/- 0.27) x 10(-10)P cm(3) molecule(-1) s(-1). The radicals were generated by the 248 nm photolysis of ClNCO in an excess of C(2)H(6). Quantitative infrared time-resolved absorption spectrophotometry was used to follow the temporal dependence of the reactants and the appearance of the products. Five species were monitored, HCl, NCO, HCN, HNCO, and C(2)H(4), providing a detailed picture of the chemistry occurring in the system. Other rate constants were also measured: ClNCO + C(2)H(5), k(10) = (2.3 +/- 1.2) x 10(-13) , NCO + C(2)H(6), k(2) = (1.6 +/- 0.11) x 10(-14), NCO + C(4)H(10), k(4) = (5.3 +/- 0.51) x 10(-13), with units cm(3) molecule(-1) s(-1) and uncertainties of one-standard deviation in the scatter of the data.  相似文献   

20.
Reactivities of the structural isomers CCN+ and CNC+ were examined in a selected-ion flow tube at 300 +/- 5 K. The less reactive CNC+ isomer was identified as the product of the reactions of C(+) + HCN and C(+) + C2N2; in these reactions only CNC+ can be produced because of energy constraints. Rate coefficients and branching ratios are reported for the reactions of each isomer with H2, CH4, NH3, H2O, C2H2, HCN, N2, O2, N2O, and CO2. Ab initio calculations are presented for CCN+ and CNC+; a saddle point for the reaction CCN+ --> CNC+ is calculated to be 195 kJ mol-1 above the CNC+. The results provide evidence that the more reactive CCN+ isomer is unlikely to be present in measurable densities in interstellar clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号