首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Sc2SiO5 single crystals doped with 0.001 at.% of the 143Nd3+ ion were studied by continuous-wave and pulse electron paramagnetic resonance methods. The g-tensors and hyperfine structure tensors for two magnetically non-equivalent Nd ions were obtained. The spin–spin and spin–lattice relaxation times were measured at 9.82 GHz in the temperature range from 4 to 10 K. It was established that three relaxation processes contribute to the spin–lattice relaxation processes. There are one-phonon spin–phonon interaction, two-phonon Raman interaction and two-phonon Orbach–Aminov relaxation processes. It was established that spin–spin relaxation time is of the same magnitude for neodymium ion doped in Sc2SiO5 and in Y2SiO5.  相似文献   

2.
Comprehensive NMR investigation of low-frequency spin dynamics of LiCu2O2 (LCO) and NaCu2O2 (NCO) low-dimensional helical magnets in the paramagnetic state has been carried out for the first time. Temperature dependences of the spin–lattice relaxation rate and anisotropy on various LCO/NCO nuclei have been determined at various orientations of single crystals in an external magnetic field. The spatial asymmetry of spin fluctuations in LCO multiferroic has been discovered. The quantitative analysis of the anisotropy of spin–lattice relaxation in LCO/NCO has allowed estimating the contributions of individual neighboring Cu2+ ions to the transferred hyperfine field on Li+(Na+) ions.  相似文献   

3.
The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin–lattice T1 and spin–spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12–C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.  相似文献   

4.
The spin lattice relaxation rates of deuterated methyl groups are calculated for threefold and sixfold potentials. It is shown that it should be possible to determine the symmetry of the potential hindering the methyl groups from deuteron spin lattice relaxation experiments. The temperature dependence of the spin lattice relaxation rates is discussed using a simple model. The similarities and the differences between proton NMR and deuteron NMR are pointed out. The main difference is thatEaEb transitions are forbidden by spin selection rules in case of CH3, but not for CD3. Therefore, and due to the fact that the quadrupolar interaction is a single particle interaction, deuteron NMR allows the study of the rotational dynamics of single methyl groups.  相似文献   

5.
The temperature dependences of nuclear magnetic resonance and magic angle spinning nuclear magnetic resonance spectra of 27Al nuclei in natrolite (Na2Al2Si3O10· 2H2O) have been studied. The influence of water molecules and sodium ions mobility on the shape of the 27Al NMR spectrum and framework dynamics have been discussed The temperature dependences of the spin–lattice relaxation times T1 of 27Al nuclei in natrolite have also been studied. It has been shown that the spin–lattice relaxation of the 27Al is governed by the electric quadrupole interaction with the crystal electric field gradients modulated by translational motion of H2O molecules in the natrolite pores. The dipolar interactions with paramagnetic impurities become significant as a relaxation mechanism of the 27Al nuclei only at low temperatures (<270 K).  相似文献   

6.
We have employed deuteron nuclear magnetic resonance (NMR) spectroscopy in order to study the dynamics of the deuterated water (D2O) molecules introduced into a perfluorosulfonic acid ionomer Nafion (NR-211) film. According to the 2H NMR spectral analysis, the deuterated water molecules at low temperatures occupied either relatively rigid or mobile sites up to the temperature TM=240 K where all the deuterated water molecules became mobile. The temperature-dependent NMR linewidths sensitively reflected the motional narrowing of the rigid and mobile sites, and the NMR chemical shift reflected significant changes in the hydrogen bonds of the deuterated water. While a slow- to fast-limit motional transition was manifested at TM in the laboratory-frame NMR spin–lattice relaxation, the rotating-frame spin–lattice relaxation indicated no bulk liquid water state down to 200 K.  相似文献   

7.
The diffusion of hydrogen in LaNi5+xH6 (x=?0.2, 0.0, 0.2) has been investigated by NMR from 150 to 300 K. High-temperature data of the spin-spin relaxation time T2 and the rotating frame spin lattice relaxation time T1? are independent of stoichiometry but the data of the spin lattice relaxation time T1 and low-temperature T1? data are not, and they do not fit Torrey's relaxation model.  相似文献   

8.
The frequency-field and orientation dependences of the electron paramagnetic resonance (EPR) spectra are measured for impurity Tm3+ ions in yttrium orthosilicate (Y2SiO5) single crystals by stationary EPR spectroscopy in the frequency range of 50–100 GHz at 4.2 K. The position of the impurity ion in the crystal lattice and its magnetic characteristics are determined. The temperature dependences of the spin–lattice and phase relaxation times are measured by pulse EPR methods in the temperature range of 5–15 K and the high efficiency of the direct single-phonon mechanism of spin–lattice relaxation is established. This greatly shortens the spin–lattice relaxation time at low temperatures and makes impurity Tm3+ ions in Y2SiO5 a promising basis for the implementation of high-speed quantum memory based on rare-earth ions in dielectric crystals.  相似文献   

9.
The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61–66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2t del–τπt del–echo. The spin–spin and spin–lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.  相似文献   

10.
Using nuclear (proton) magnetic resonance relaxometry (NMRR) was studied oil disperse systems. Dependences of NMR–relaxation parameters—spin–lattice T1i, spin–spin T2i relaxation times, proton populations P1i and P2i, and petrophysical correlations were received for light and heavy oils. Experimental results are interpreted on the base of structure-dynamical ordering of oil molecules with structure unit formation.  相似文献   

11.
《Solid State Ionics》2006,177(35-36):3063-3068
Solid-state 17O NMR measurements between room temperature and 973 K were performed for the first time on 17O-enriched yttria-stabilized zirconia samples. Spin–lattice relaxation is found to exhibit a strong temperature dependence which can be traced back to motional displacements of the oxygen ions and which is almost unaffected by the actual sample constitution. Analysis of the spin–lattice relaxation data provides the motional correlation times. The derived activation energies are relatively low with values of about 30 kJ/mol. In addition, large temperature effects are observed for the 17O NMR line widths, and thus for spin–spin relaxation, which are again attributed to the oxygen ion mobility. In this case, the underlying oxygen motions, however, occur on a length-scale which is different from that probed by spin–lattice relaxation.  相似文献   

12.
Water protons T1 and T2 relaxation times in samples of whole blood, obtained from healthy people and from patients affected by Macrocytic Anemia on one side and Lymphatic and Myeloid Leukemia on the other, have been measured with the FT NMR technique at 80 Mhz and at 25 °C. No significant difference with respect to the value of the spin lattice relaxation time parameter measured for the healthy control group is experimentally evident in the case of the Macrocytic Anaemia while the spin spin relaxation time increases in magnitude. On the reverse both the leukemic cases present a significant (p < 0.001) increase in the relaxation times with respect to the control group. The experimental relaxation data belonging to the anaemic case show a linear correlation with the red cells volume while that obtained for the two leukaemic cases appear linearly correlated with the total white cell numbers. From the relaxation data an estimate of the amount of water tightly bound to the white cells membrane can be determined which results roughly thirty times lower than that bound to the red cells membrane. In this work is also presented a step by step outline of the water relaxation behavior which starts with the pure water and ends with the water in the whole blood supported by relaxation experiments done on the isolated blood main components.  相似文献   

13.
The role of low-lying excited states on the spin–lattice relaxation times (T1) of organic radicals has been investigated. To test the applicability of Kivelson's electric field fluctuation model (D. Kivelson, J. Chem. Phys. 45, 1324 (1966)), based on the Orbach mechanism of spin relaxation, the T1s of the anion radicals of benzene, benzene-1-d, toluene, ethyl benzene, isopropyl benzene, t-butyl benzene, p-xylene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene in liquid solutions, with potassium cation as the counter ion, have been measured by the pulse saturation recovery technique. The energy gap between the ground and the first excited electronic states changed with the substitutions to different extent. The spin–lattice relaxation rates showed correlation with this energy gap. Anion radicals of benzene and benzene-1-d showed the shortest T1 among the radicals studied here. A small but measurable energy splitting due to the deuterium substitution in benzene-1-d radical was obtained from the temperature dependence of T1. Spin–lattice relaxation times of benzene anion measured here decreased monotonically in the range of ?60 to ?125 °C, in contrast to some reported claims of very unusual temperature dependence, based on the continuous wave microwave power saturation studies. Our results also showed that the ion pairing between benzene anion and potassium cation did not significantly influence the spin–lattice relaxation times.  相似文献   

14.
The resonance frequencies and relaxation mechanisms of Cs2CuBr4 and Cs2ZnBr4 were examined by static nuclear magnetic resonance (NMR) method. Here, the two inequivalent Cs(1) and Cs(2) sites surrounded by Br ions were distinguished. The saturation recovery traces for 133Cs nuclei in Cs2CuBr4 with the paramagnetic ions, and those in Cs2ZnBr4 without the paramagnetic ions were each fitted by four exponential functions. From these results, the spin–lattice relaxation times T1 in the laboratory frame of 133Cs nuclei in the two crystals were obtained, and Cs(1) surrounded by 11 bromide ions has a longer relaxation time than Cs(2) surrounded by 9 bromide ions.  相似文献   

15.
嵌段共聚物溶致液晶相中水的2H-NMR动力学分析   总被引:3,自引:1,他引:2  
采用D2O 的2H-NMR线型和弛豫分析了PEO-PPO-PEO/D2O/对二甲苯体系的层状和六角液晶相的动力学行为. 通过实验测得了两个不同体系的自旋 晶格弛豫时间T1、自旋-自旋弛豫时间T22H-NMR 谱. 2H-NMR 谱均为具有四极劈裂的粉末谱线型,且在谱图的中心,βLD=54.7°时存在一个倒峰. 倒峰的出现直接表明引起体系中弛豫的主要动力学过程处于极窄化区域. 采用NMR弛豫模型,通过调节动力学参数,使理论模拟的2H-NMR谱、弛豫时间、倒峰的大小与实验的对应量相吻合,求得了体系的动力学参数.  相似文献   

16.
The temperature dependence of the 19F NMR linewidth ΔH in KCoF3 has been measured over the entire paramagnetic solid state region. The dramatic decrease in the hyperfine-broadened, exchange narrowed ΔH that occurs above 200 K is interpreted as arising from fast Co2+ single-ion, spin-lattice relaxation. A model theory of the temperature dependence of ΔH is given which incorporates the interplay of exchange and spin lattice relaxation effects on the decay of the spin autocorrelation function.  相似文献   

17.
The longitudinal susceptibility of a spin system in contact with a lattice is calculated from quantum statistics in the high temperature approximation. The method is based on the concept of time dependent temperatures describing the relaxation of several partial energies 〈þ v 〉(t). The result forχ (Ω) is a sum of Debye functions. Explicit formulas for the relaxation times and the coefficients of the Debye functions are given in terms of the Hamiltonians. Three cases are especially discussed: 1. A part of the spin system is strongly coupled to the Zeeman system. 2. The lattice is weakly coupled to the total spin system. It is shown that on certain conditions the total spin systems may be treated as isolated from the lattice. 3. A part of the spin system dependent on the static magnetic field is isolated from the rest. An example is discussed which explains recent measurements obtained in CeCl3 · 7H2O.  相似文献   

18.
Optimization of nitroxides as probes for EPR imaging requires detailed understanding of spectral properties. Spin lattice relaxation times, spin packet line widths, nuclear hyperfine splitting, and overall lineshapes were characterized for six low molecular weight nitroxides in dilute deoxygenated aqueous solution at X-band. The nitroxides included 6-member, unsaturated 5-member, or saturated 5-member rings, most of which were isotopically labeled. The spectra are near the fast tumbling limit with T1T2 in the range of 0.50–1.1 μs at ambient temperature. Both spin–lattice relaxation T1 and spin–spin relaxation T2 are longer for 15N- than for 14N-nitroxides. The dominant contributions to T1 are modulation of nitrogen hyperfine anisotropy and spin rotation. Dependence of T1 on nitrogen nuclear spin state mI was observed for both 14N and 15N. Unresolved hydrogen/deuterium hyperfine couplings dominate overall line widths. Lineshapes were simulated by including all nuclear hyperfine couplings and spin packet line widths that agreed with values obtained by electron spin echo. Line widths and relaxation times are predicted to be about the same at 250 MHz as at X-band.  相似文献   

19.
Proton NMR second moment and spin—lattice relaxation times T 1 and T 1p have been studied for polycrystalline guanidinium hexachloroantimonate C(NH2)3SbCl6 in a wide temperature range. A dynamic inequivalence of two cations has been detected in spite of their crystal-lographical equivalence. Activation parameters for C3 reorientation and self-diffusion of the more mobile cation have been determined. It was shown that the para–ferroelastic phase transition at 351 K is connected with abrupt changes in the dynamics of the two cations. The weaker, second-order transition at 265 K is thought to be related to a change in the dynamics of one of the cations.  相似文献   

20.
Emission Mössbauer spectroscopy on 57Fe fed by 57Mn ions implanted in the metal oxides ZnO, MgO and Al2O3 has been performed. The implanted ions occupy different lattice sites and charge states. A magnetic part of the spectra in each oxide can be assigned to Fe3?+? ions in a paramagnetic state with unusually long relaxation time observable to temperatures up to several hundreds Kelvin. Earlier expectations that the magnetic spectra could correspond to an ordered magnetic state could not be confirmed. A clear decision for paramagnetism and against an ordered magnetic state was achieved by applying a strong magnetic field of 0.6 Tesla. The relaxation times deduced were compared to spin–lattice relaxation times from electron paramagnetic resonance (EPR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号