首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
建立了分离式热管蒸发段充冷过程的数理模型,分析了在不同热管介质入口温度下热管蒸发段管外冰层厚度、热管介质出口温度、热管外蓄冷介质温度、单位时间蓄冷量以及总蓄冷量随时间的变化关系,研究结果表明,在热管蒸发段长度和管径一定的情况下,降低热管介质入口温度可以提高热管蒸发段单位时间蓄冷量、减小热管充冷时间。  相似文献   

2.
微重力下套管式蓄冰器的充释冷特性分析   总被引:2,自引:0,他引:2  
提出了一种可用于航天器热控系统的套管式蓄冰装置,采用热焓法对蓄冷装置的充释冷特性进行了数值模拟,给出了蓄冰装置在充释冷过程中蓄冷介质温度、结融冰厚度和对应充释冷功率随时间的变化,并对不同参数下的计算结果进行了分析比较,可为蓄冷装置的优化设计提供参考。  相似文献   

3.
内外融冰技术相结合的蓄冷方式研究   总被引:3,自引:0,他引:3  
在分别介绍内融冰、外融冰技术的基础上 ,提出采用内外融冰技术相结合的蓄冷方法。该方法能有效克服单融冰方式在空调高峰期释冷能力不足的缺点 ,同时能降低蓄冷设备的设计容量 ,减少一次性投资 ,是一项值得推广应用的技术。  相似文献   

4.
文中对球形堆积床蓄冷空调系统的蓄冷和放冷特性进行实验研究。在实验过程中,测量堆积床内流体温度、蓄冷时蒸发器进出口温度、放冷时换热器进出口温度以及室内机组进风和出风温度。通过测量的数据,得出蓄冷和放冷过程中的蓄冷、放冷速率和蓄冷、放冷量随时间的变化。在放冷时,出风温度稳定在16℃。因此,该系统可以用于空调系统的蓄冷和放冷过程,既有利于电力负荷"移峰填谷",又能满足室内温度调节的需求。  相似文献   

5.
分离式螺旋热管蓄冰过程动态特性模拟   总被引:1,自引:1,他引:0  
在提出分离式螺旋热管蓄冷空调系统的基础上,建立了螺旋热管蒸发段蓄冰过程的理论模型,分析了单位时间内管外结冰厚度、管外冰层厚度、蓄冰率、单位时间蓄冷量以及系统总蓄冷量随时间的变化关系,并对三种不同管径的螺旋热管的蓄冰特性进行了分析研究,研究结果表明在螺旋热管曲率半径相同的条件下,增大管径可以提高系统的单位时间蓄冷量。  相似文献   

6.
现有的直接蒸发式冰蓄冷空调蓄冰槽内在融冰运行时都存在不利于传热的较大垂直温差.本文通过在蓄冰槽中下部位置处设置水平交叉盘管,使蓄冰槽内的坚直冰柱易于断裂,从而改善槽内自然对流条件,达到强化换热的目的.实验表明,水半盘管的布置明显减小了蓄冰槽内在融冰过程中的上下层温差,传热过程得到强化,融冰速度加快,制冷系统的COP也相应得到提高.  相似文献   

7.
根据蓄冷球和载冷剂之间的能量平衡,并考虑载冷剂与蓄冷球之间的换热系数变化、载冷剂的导热、蓄冷球堆积床热损失的影响,建立了蓄冷球堆积床放冷过程的数理模型。采用数值计算方法模拟了蓄冷球堆积床的放冷过程,并讨论载冷剂流速、载冷剂入口温度以及堆积床孔隙率对放冷过程中载冷剂出口温度和放冷量的影响。  相似文献   

8.
以竖直盘管直接蒸发内融冰式冰蓄冷空调蓄冰槽内的传热过程为基础,利用热阻网络法和能量平衡建立了融冰过程的数学模型,对其融冰机理进行了理论分析。计算结果表明,融冰过程中蓄冰槽盘管出口的制冷剂温度随时间逐渐升高,但在后期存在一个因冰柱碎裂上浮导致自然对流瞬时得到强化从而引起的短时间轻微下降现象。另外,蓄冰槽内的传热系数经历了先骤然降低,然后维持稳定,最后又快速上升的过程。该现象与盘管外由于冰融化所形成的水环直径有关,水环直径越大,释放冷量的速度就越小。通过与实验数据的对比,验证了计算模型的合理性和准确性。  相似文献   

9.
分时蓄冷时负荷变化大,但可充分利用低谷电来制冰蓄冷,而在高峰时,制冷机不开以融冰供冷,满足空调负荷要求,真正起到在电网中削峰填谷作用。分时蓄冷时,负荷变化大,在融冰循环运行时,流量变化幅度随之变大,情况特殊,因此需要系统要有应对策略。  相似文献   

10.
阐述了分离式螺旋热管的换热特性,并提出了将螺旋热管应用于蓄冷系统的新方案。建立了分离式螺旋热管的换热模型,分析了热流密度、充液率以及几何尺寸对螺旋热管管内换热的影响,为螺旋热管结构的优化以及在蓄冷系统的应用提供了理论依据。  相似文献   

11.
将热管作为换热元件应用于相变蓄热系统中,研制了一套热管式相变蓄热换热器。采用石蜡作为蓄热材料,对其储、放能过程即内部石蜡的融化与凝固过程进行了实验研究。测定了储、放能过程中不同时刻换热器内石蜡的温度分布; 改变供、取热流体参数,分析了供/取热流体的入口温度与流量对换热器储/放能过程的影响;分析了储、放能过程中能量随时间的变化情况。结果表明,热管在本换热器内极好地发挥了换热元件的作用,换热器运行状况良好,各项功能均能较好地实现。  相似文献   

12.
从技术角度研究和探讨了热管做为冰蓄冷装置的适用性,建立了单根热管蓄冰过程的数学模型,提出了蒸发段与冷凝段的长度配比;进行了一系列的实验,得到了不同工况下蓄冰厚度与时间之间的关系;结果表明热管蓄冰装置有着非常良好的蓄冰性能,为热管冰蓄冷装置的推广应用,提供整个装置的最优配置模式参数及强有力的理论依据及实验支撑。  相似文献   

13.
In this study, Marangoni flow and heat transfer enhancement in a heat pipe have been investigated. The experiments were carried out at different heat inputs. A constant temperature water bath was used at the condenser section at three temperature levels. Heat transfer coefficients and thermal resistances of the heat pipe were measured for pure water and water/butanol solutions. The experimental results confirmed that the heat pipe filled with butanol solutions showed better thermal performance than the water-filled heat pipe. At maximum heat flux, 25% heat transfer improvement was obtained when 7 wt% butanol solution was used instead of pure water.  相似文献   

14.
Thermal performance of a latent heat storage unit is evaluated experimentally. The latent heat thermal energy storage system analyzed in this work is a shell-and-tube type of heat exchanger using paraffin wax (melting point between 58°C and 60°C) as the phase change material. The temperature distribution in the phase change material is measured with time. The influence of mass flow rate and inlet temperature of the heat transfer fluid on heat fraction is examined for both the melting and solidification processes. The mass flow rate of heat transfer fluid (water) is varied in the range of 0.0167 kg/s to 0.0833 kg/s (1 kg/min to 5 kg/min), and the fluid inlet temperature is varied between 75°C and 85°C. The experimental results indicate that the total melting time of the phase change material increases as the mass flow rate and inlet temperature of heat transfer fluid decrease. The fluid inlet temperature influences the heat fraction considerably as compared to the mass flow rate of heat transfer fluid during the melting process of the phase change material.  相似文献   

15.
Phase change in ice-water systems in the geometry of horizontal cylindrical annulus with constant inner wall temperature and adiabatic outer wall is modeled with an enthalpy-based mixture model. Solidification and melting phenomena under different temperature conditions are analyzed through a sequence of numerical calculations. In the case of freezing of water, the importance of convection and conduction as well as the influence of cold pipe temperature on time for the complete solidification is examined. As for the case of melting of ice, the influence of the inner pipe wall temperature on the shape of the ice-water interface, the flow and temperature fields in the liquid, the heat transfer coefficients and the rate of melting are analyzed. The results of numerical calculations point to good qualitative agreement with the available experimental and other numerical results.  相似文献   

16.
Water-spray-cooled quasi-isothermal compressed air energy storage aims to avoid heat energy losses from advanced adiabatic compressed-air energy storage (AA-CAES). The compression efficiency increases with injection water spray. However, the energy-generated water spray cannot be ignored. As the air pressure increases, the work done by the piston and the work converted into heat rise gradually in the compression process. Accordingly, the flow rate of the water needed for heat transfer is not a constant with respect to time. To match the rising compression heat, a time sequence of water-spray flow rate is constructed, and the algorithm is designed. Real-time water-spray flow rate is calculated according to the difference between the compression power and heat-transfer power. Compared with the uniform flow rate of water spray, energy consumption from the improved flow rate is reduced.  相似文献   

17.
A new heat transporter is described, the tiltpipe liquid thermosiphon (TLT). In service, a straight, sealed pipe, filled with liquid, is maintained in a tilted orientation. By means of the contained liquid, heat is received from a heat source at the lower end of the pipe, transported to the elevated end, and delivered to a heat sink. The heat transport rate and the temperature distribution in the TLT were studied over a wide range of tilts, with water as the liquid, contained in a steel pipe. At its optimum tilt the TLT combined a high heat transport rate with virtually no temperature degradation in the water from end-to-end of the pipe. In both of these criteria the TLT far exceeded the performance of the unit in vertical orientation, the only one examined by previous investigators. Another characteristic difference between the tilted and the vertical unit was that at any given pipe cross section in the heat transport region (i.e., between the heat source and the heat sink), the water in the tilted pipe had a higher temperature near the top of the cross-section than near the bottom. With vertical orientation there was no such temperature difference. The experimental results with the TLT, particularly in the region of the optimum tilt, were explainable in terms of a liquid thermosiphon mechanism, but a unique one. It was inferred that there was cyclical countercurrent flow of contiguous streams in a single pipe with a warmer, less dense water stream flowing axially upward through a top segment of the pipe cross-section and, separated by a quiescent interfacial plane, a cooler, more dense water stream flowing axially downward, through a bottom segment. It followed that at the pipe terminals each stream reversed itself, becoming its opposite by virtue of heat receipt/delivery at the heat source/sink. The contiguous, countercurrent flow pattern described above was confirmed visually at the optimum tilt of eleven degrees by observation of water flow inside a clear plastic tube added to the midsection of the steel pipe. The streams were rendered visible by injections of soluble coloring material in the water at the elevated and lowered ends of the pipe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号