首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
The kinetics of Ru(III) catalysed oxidation of l-leucine by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.60 mol dm−3 was studied spectrophotometrically. The oxidation products are pentanoic acid and Ag(I). The stoichiometry is [l-leucine]:[DPA] = 1:2. The reaction is of first order in Ru(III) and [DPA] and has less than unit order in both [l-leu] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)–l-leucine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectral studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (Kc) was also calculated for the Ru(III) catalysed reaction at different temperatures. From the plots of log Kc versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to the slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

4.
Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in alkaline medium is assumed to occurvia substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-limiting stage and yield the products with regeneration of catalyst in the subsequent fast step. The reaction exhibits fractional order in hexacyanoferrate(II) and first-order unity each in oxidant and catalyst. The reaction constants involved in the mechanism are derived.  相似文献   

5.
The kinetics of oxidation of atenolol (ATN) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction between DPC and ATN in alkaline medium exhibits 1:2 stoichiometry (ATN:DPC). The reaction is of first order in [DPC] and has less than unit order in both [ATN] and [alkali]. However, the order in [ATN] and [alkali] changes from first order to zero order as their concentration increase. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–ATN complex, which decomposes slowly in a rate-determining step followed by other fast steps to give the products. The main oxidative products were identified by spot test, IR, NMR and LC–ESI-MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined.  相似文献   

6.
The kinetics of oxidation of a non-steroidal analgesic drug, aspirin (ASP) by diperiodatocuprate(III)(DPC) in the presence and absence of osmium(VIII) have been investigated at 298 K in alkaline medium at a constant ionic strength of 0.10 mol dm−3 spectrophotometrically. The reaction showed a first-order in [DPC] and less than unit order in [ASP] and [alkali] for both the osmium(VIII) catalysed and uncatalysed reactions. The order with respect to Os(VIII) concentration was unity. The effects of added products, ionic strength, periodate and dielectric constant have been studied. The stoichiometry of the reaction was found to be 1:4 (ASP:DPC) for both the cases. The main oxidation product of aspirin was identified by spot test, IR, NMR and GC–MS. The reaction constants involved in the different steps of the mechanisms were calculated for both reactions. Activation parameters with respect to slow step of the mechanisms were computed and discussed for both the cases. The thermodynamic quantities were also determined for both reactions. The catalytic constant (KC) was also calculated for catalysed reaction at different temperatures and the corresponding activation parameters were determined.  相似文献   

7.
《印度化学会志》2021,98(8):100104
The kinetics approach of oxidation of torsemide (TOR) by hexacyanoferrate (III) [HCF (III)] has been identified spectrophotometrically at 420 ​nm in the alkaline medium in the presence and absence of catalyst ruthenium (III) at 25 ​°C, by keeping ionic strength (1 ​× ​10−2 ​mol ​dm−3) constant. The reaction exhibits at the stoichiometry ratio 1:2 of TOR and HCF (III), for uncatalysed and catalysed reactions. In the absence and presence of the catalyst, the order of the reactions obtained for TOR and HCF (III) was unity. However, the rate of the reactions enhanced by the increase in the concentration of catalyst, as well as the rate increases with an increase in alkaline concentration. The activation parameters for the reaction at the slow step were identified, and the effect of temperature on the rate of the reaction was analysed. A suitable mechanism has been demonstrated by considering the obtained results. The derived rate laws are reliable with analysed experimental kinetics.  相似文献   

8.
The kinetics of ruthenium(III) catalyzed oxidation of formaldehyde and acetaldehyde by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The rate of oxidation of formaldehyde is directly proportional to [Fe(CN) 3– 6 ] while that of acetaldehyde is proportional tok[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]}, wherek, k andk are rate constants. The order of reaction in acetylaldehyde is unity while that in formaldehyde falls from 1 to 0. The rate of reaction is proportional to [Ru(III)] T in each case. A suitable mechanism is proposed and discussed.
Die Kinetik der Ru(III)-katalysierten Oxidation von Formaldehyd und Acetaldehyd mittels alkalischem Hexacyanoferrat(III)
Zusammenfassung Die Untersuchung der Kinetik erfolgte spektrophotometrisch. Die Geschwindigkeitskonstante der Oxidation von Formaldehyd ist direkt proportional zu [Fe(CN) 3– 6 ], währenddessen die entsprechende Konstante für Acetaldehyd proportional zuk[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]} ist, wobeik,k undk Geschwindigkeitskonstanten sind. Die Reaktionsordnung für Acetaldehyd ist eine erste, die für Formaldehyd fällt von erster bis zu nullter Ordnung. Die Geschwindigkeitskonstante ist in jedem Fall proportional zu [Ru(III)] T . Es wird ein passender Mechanismus vorgeschlagen.
  相似文献   

9.
10.

Abstract  

The kinetics of the oxidation of ruthenium(III)-catalyzed oxidation of pentoxifylline (PTX) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.30 mol dm−3 was studied spectrophotometrically. The reaction between PTX and DPC in alkaline medium in the presence of Ru(III) exhibits 1:2 stoichiometry (PTX:DPC). The reaction was of first order in DPC, less than the unit order in [PTX] and [OH] and negative fractional order in [IO4 ]. The order in [Ru(III)] was unity. Intervention of free radicals was observed in the reaction. The main products were identified by TLC and spectral studies including LC-MS. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)-PTX complex, which reacts with monoperiodatocuprate(III) to decompose in a rate determining step followed by a fast step to give the products. The reaction constants involved in different steps of the mechanism were calculated. The activation parameters with respect to the slow step of the mechanism were computed and discussed, and thermodynamic quantities were also determined. The active species of catalyst and oxidant have been identified.  相似文献   

11.
The kinetics of oxidation of propane-1,3-diol by alkaline hexacyanoferrate (III) catalyzed by ruthenium trichloride has been studied spectrophotometrically. A reaction mechanism involving the formation of an intermediate complex between the substrate and the catalyst is proposed. In the rate-determining step this complex is attacked by hexacyanoferate(III) forming a free radical which is further oxidized.  相似文献   

12.
Osmium(VIII) catalyzed oxidation of tellurium(IV) by periodate in alkaline medium is found to occurvia oxidant-catalyst complex formation in a slow step followed by the interaction of substrate and complex in the fast step to yield the products with regeneration of catalyst. One of the products, Te(VI), considerably retards the rate of reaction. The reaction shows zero order in [tellurium(IV)], first order each in [IO4] and [Os(VIII)] and an inverse fractional order dependence on [OH]. A plausible mechanism is proposed and the reaction constants involved in the mechanism are derived.  相似文献   

13.
14.
The kinetic of oxidation of dipeptides (DP) namely valyl-glycine (Val-Gly), alanyl-glycine (Ala-Gly) and glycyl-glycine (Gly-Gly), by Mn(III) have been studied in the presence of sulphate ions in acid medium at 26°C. The reaction was followed spectrophotometrically at λmax = 500 nm. A first-order dependence of the rate on both [Mn(III)]o and [DP]o was observed. The rate is independent of the concentration of reduction product, Mn(II) and hydrogen ions. The effects of varying the dielectric constant of the medium and addition of anions such as sulphate, chloride and perchlorate were studied. The activation parameters have been evaluated using Arrhenius and Eyring plots. The oxidation products were isolated and characterized. A mechanism involving the reaction of DP with Mn(III) in the rate-limiting step is suggested. An apparent correlation was noted between the rate of oxidation and the hydrophobicity of these dimers, where increased hyphobicity results in increased rate of oxidation  相似文献   

15.
16.
17.
The oxidative cleavage of vitamin B1 (thiamine hydrochloride, THM) with sodium N-chlorobenzenesulfonamide (chloramine-B, CAB) has been kinetically investigated in HCl medium in presence of ruthenium(III) catalyst at 308 K. The oxidation reaction follows the rate law, −d[CAB]/dt = k [CAB] [Ru(III)] [H+] [THM]a [Cl]b, where a and b are less than unity. Variation of ionic strength of the medium and addition of the reaction product, benzenesulfonamide (BSA) had no significant effect on the reaction rate. The change in relative permittivity of the medium affected by changing the solvent composition with acetonitrile has been studied. The stoichiometry of the reaction was found to be 1:1, and N-[(4-amino-2-methylpyrimidine-5-yl)methyl]benzensulfonamide and 2-(4-methylthiazol-5-yl)ethanol were identified as the oxidation products of vitamin B1. The reaction constants involved in the mechanism were computed. The reaction was studied at different temperatures and the overall activation parameters have been evaluated. C6H5SO2NHCl has been postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanisms and the relative rate laws have been deduced. Correspondence: Kikkeri Narasimhasetty Mohana, Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India.  相似文献   

18.
The diperiodatocuprate(III) (DPC) oxidation of DL-methionine, a sulfur containing amino acid, was studied spectrophotometrically in alkaline solution. The reaction rate was first order in the concentration of DPC and fractional order in the concentration of DL-methionine. Increasing the OH concentration decreased the rate of reaction, whereas adding IO4 enhanced the rate. The reaction was preceded by a small initiation period of about 0.8 minutes. This initiation time decreased when the concentration of IO4 or DPC increased. Adding the reaction products did not alter the rate of reaction. A mechanism including the intervention of a DL-methionine free radical is proposed and the corresponding rate law is derived. The reaction rate constants are evaluated as well as the activation parameters.  相似文献   

19.
Ornidazole is an antiparasitic drug having a wide spectrum of activity. Literature survey has revealed that no attention has been paid towards the oxidation of ornidazole with any oxidant from the kinetic and mechanistic view point. Also no one has examined the role of platinum group metal ions as catalysts in the oxidation of this drug. Such studies are of much use in understanding the mechanistic profile of ornidazole in redox reactions and provide an insight into the interaction of metal ions with the substrate in biological systems. For these reasons, the Ru(III)- and Os(VIII)-catalyzed kinetics of oxidation of ornidazole with chloramine-T have been studied in HCl and NaOH media, respectively at 313 K. The oxidation products and kinetic patterns were found to be different in acid and alkaline media. Under comparable experimental conditions, in Ru(III)-catalyzed oxidation the rate law is −d[CAT]/dt = k [CAT]o[ornidazole]ox[H+]y[Ru(III)]z and it takes the form −d[CAT]/dt = k [CAT]o[ornidazole]ox[OH]y[Os(VIII)][ArSO2NH2]z for Os(VIII)-catalyzed reaction, where x, y and z are less than unity. In acid medium, 1-chloro-3-(2-methyl-5-nitroimidazole-1-yl)propan-2-one and in alkaline medium, 1-hydroxy-3-(2-methyl-5-nitroimidazole-1-yl)propan-2-one were characterized as the oxidation products of ornidazole by GC–MS analysis. The reactions were studied at different temperatures and the overall activation parameters have been computed. The solvent isotope effect was studied using D2O. Under identical set of experimental conditions, the kinetics of Ru(III) catalyzed oxidation of ornidazole by CAT in acid medium have been compared with uncatalyzed reactions. The relative rates revealed that the catalyzed reactions are about 5-fold faster whereas in Os(VIII) catalyzed reactions, it is around 9 times. The catalytic constant (KC) has been calculated for both the catalysts at different temperatures and activation parameters with respect to each catalyst have been evaluated. The observed experimental results have been explained by plausible mechanisms. Related rate laws have been worked out.  相似文献   

20.
Kinetics of ruthenium (III) catalyzed oxidation of atenolol by permanganate in alkaline medium at constant ionic strength of 0.30 mol dm3 has been studied spectrophotometrically using a rapid kinetic accessory. Reaction between permanganate and atenolol in alkaline medium exhibits 1 : 8 stoichiometry (atenolol : KMnO4). The reaction shows first-order dependence on [permanganate] and [ruthenium (III)] and apparently less than unit order on both atenolol and alkali concentrations. Reaction rate decreases with increase in ionic strength and increases with decreasing dielectric constant of the medium. Initial addition of reaction products does not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The active species of ruthenium (III) is understood as [Ru(H2O)5OH]2+. The reaction constants involved in the different steps of mechanism are calculated. Activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号