首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The distinctive features of the flow in the region of interaction between an oscillating shock and a flat-plate boundary layer are studied for the laminar, transitional, and turbulent flow regimes. The flow patterns and the pressure and heat transfer distributions in the interaction region are analyzed at different intensities, frequencies, and amplitudes of the oscillating shock. The results of the interaction of oscillating and steady shocks with the flat-plate boundary layer are compared.  相似文献   

2.
Results of numerical simulation of interaction between an oblique shock wave and a turbulent boundary layer formed in a supersonic (Mach number M =5) flow past a flat plate are presented. The computations are performed for three cases of interaction of different intensity, which result in an attached or detached flow. Numerical results are compared with experimental data. The effect of flow turbulence and shockwave unsteadiness on flow parameters is studied.  相似文献   

3.
The flow pattern and the heat transfer on sharp and blunt flat plates near a wedge in a Mach 6 stream are experimentally investigated for two Reynolds numbers corresponding to the laminar and transitional states of the undisturbed boundary layer ahead of the wedge. It is shown that, as in a two-dimensional flow, plate bluntness leads to the attenuation of the heat transfer in the boundary layer/shock wave interference zone. However, when a certain threshold value of the bluntness is exceeded, a further increase in the bluntness has almost no effect on the heat transfer. For the first time, an experiment conducted in an intermittent (blow-down) wind tunnel has been based on the comprehensive use of panoramic (global) techniques for measuring the heat transfer and pressure coefficients and a method for visualizing the surface friction employing the luminescence effect after UV irradiation.  相似文献   

4.
The results of an experimental investigation and numerical simulation of heat exchange are given for sharp and blunt plates in a hypersonic air flow. The experiments were carried out in a Ludwig-type wind tunnel at hypersonic Mach numbers and a Reynolds number ReL which varied over the range from 0.24 106 to 1.31 106. The bluntness radius r was varied over the range from 0.008 mm (almost sharp plate) to 4 mm (the corresponding Reynolds numbers Rer from 15 to 4 104). The numerical simulation was carried out by solving the complete two-dimensional Navier-Stokes equations. The experimental data were correlated using the well-known viscous hypersonic interaction parameters.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 168–180. Original Russian Text Copyright © 2005 by Borovoi, Egorov, Skuratov and Struminskaya.  相似文献   

5.
The stability of hypersonic viscous gas flow in a shock layer in the neighborhood of a flat plate is considered. The stability of the velocity, temperature, density, and pressure profiles calculated on the basis of the complete viscous shock layer equations is investigated within the framework of the linear stability theory with allowance for the shock wave relations. The calculated perturbation growth rates and phase velocities are compared with the experimental data obtained by means of electron-beam fluorescence.  相似文献   

6.
The heat transfer to sharp and slightly blunted flat plates in the zone of oblique shock incidence has been experimentally investigated. The experiments were performed at the Mach numbers M = 6, 8, and 10 and Reynolds numbers ranging from 0.2 × 106 to 1.3 × 106 corresponding to transitional (laminar-turbulent) flow in the shock-induced separation zone. Emphasis is placed on small values of the bluntness radius r. It is established that there exists a threshold value r th of the radius that bounds the range of its influence on the heat transfer, namely, an increase in r to r th leads to a sharp reduction in the maximum heat transfer coefficient in the interference zone, whereas a further increase (beyond r th) has only a slight effect on the maximum heat transfer coefficient. The dependence of r th on the main hypersonic flow parameters is analyzed. an explanation of the observable phenomena is given.  相似文献   

7.
Supersonic laminar flow past a two-dimensional “flat-plate/wedge“ configuration is numerically investigated. The pressures at the boundary layer separation and reattachment points are calculated over wide Mach and Reynolds number ranges. The minimum angles of the wedge surface inclination at which a return flow occurs are determined. The results are presented in the form of generalized Mach-number-dependences of the theoretical pressure on the wedge surface initiating boundary layer separation and the pressure at the boundary layer reattachment point.  相似文献   

8.
Direct numerical simulations of the evolution of disturbances in a viscous shock layer on a flat plate are performed for a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105. Unsteady Navier-Stokes equations are solved by a high-order shock-capturing scheme. Processes of receptivity and instability development in a shock layer excited by external acoustic waves are considered. Direct numerical simulations are demonstrated to agree well with results obtained by the locally parallel linear stability theory (with allowance for the shock-wave effect) and with experimental measurements in a hypersonic wind tunnel. Mechanisms of conversion of external disturbances to instability waves in a hypersonic shock layer are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 84–91, May–June, 2007.  相似文献   

9.
Stability of a supersonic (M = 5.373) boundary layer with local separation in a compression corner with a passive porous coating partly absorbing flow perturbations is considered by solving two-dimensional Navier-Stokes equations numerically. The second mode of disturbances of a supersonic boundary layer is demonstrated to be the most important one behind the boundary-layer reattachment point. The possibility of effective stabilization of these disturbances behind the reattachment point with the use of porous coatings is confirmed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 39–47, March–April, 2007.  相似文献   

10.
The evolution of disturbances in a hypersonic viscous shock layer on a flat plate excited by slow-mode acoustic waves is considered numerically and experimentally. The parameters measured in the experiments performed with a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105 are the transverse profiles of the mean density and Mach number, the spectra of density fluctuations, and growth rates of natural disturbances. Direct numerical simulation of propagation of disturbances is performed by solving the Navier-Stokes equations with a high-order shock-capturing scheme. The numerical and experimental data characterizing the mean flow field, intensity of density fluctuations, and their growth rates are found to be in good agreement. Possible mechanisms of disturbance generation and evolution in the shock layer at hypersonic velocities are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 3–15, September–October, 2006.  相似文献   

11.
This paper reports results of experiments on controlling longitudinal structures in the boundary layer on a at plate. The longitudinal structures were generated by a controlled vortical disturbance of the external flow by means of a distributed susceptibility mechanism. It is shown that riblets reduce the intensity of both stationary and traveling disturbances. The linear and weakly linear stages in the development of disturbances in the boundary layer are the most favorable for the use of riblets.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 47–54, July–August, 2005.  相似文献   

12.
Possible regimes of viscous-inviscid interaction at transonic external flow velocities are investigated. It is shown that different flow regimes can exist depending on the relation between such parameters as the disturbance amplitude and the Mach and Reynolds numbers. Corresponding mathematical models are formulated and the solutions of some problems describing linear regimes of disturbance development are obtained. The models developed make it possible to describe all the possible interaction regimes.  相似文献   

13.
Numerical simulations have been performed of a synthetic jet interacting with a laminar hypersonic boundary layer. Two datum cases were also considered, no jet and steady jet. The simulations for the case of no jet are in agreement with available experimental data. Predicted flow features of the steady jet interaction are broadly consistent with previous studies. For the synthetic jet, the upstream and downstream separated regions are dramatically reduced in size, and the jet appears to lie closer to the surface, compared with the steady jet. It is also found that the synthetic jet induces a greater mixing rate than the steady jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A variant of the two-parameter turbulence model which makes it possible continuously to calculate a flow region with laminar, transition and turbulent regimes is proposed for investigating the flow under conditions of high freestream turbulence intensity. It is shown that the properties of the thermal transition can be theoretically described using the quasi-steady turbulence model in the case of periodic freestream velocity distribution. The numerical results are compared with theoretical and experimental data. The approach proposed is developed for determining the combined effect of the parameters of harmonic fluctuations of the external velocity and freestream turbulence on the heat transfer characteristics on a flat plate with different boundary conditions for the enthalpy.  相似文献   

15.
The results of numerical modeling of the time-dependent flows of a viscous heat-conducting gas occurring in the region of interaction between an external inviscid flow and a laminar boundary layer near a zone of local energy supply at high subcritical Reynolds numbers are presented. The solution of the Navier-Stokes equations is constructed on the basis of the method of matched asymptotic expansions. Numerical solutions of the nonlinear boundary-value problem describing the flow in the wall region of the boundary layer are given in similarity variables. It is shown that time- and space-localized energy supply results in the formation of a self-consistent flow disturbance, whose downstream propagation is accompanied by a disturbance amplitude growth during a short time interval, even after the energy supply has stopped. Calculations of the flows induced by two heat sources placed in tandem make it possible to conclude that the time lag for the second energy supply zone and the distance between the sources can be so chosen that superposition of the disturbances induced by the first and second sources leads, due to nonlinear effects, to a considerable increase in the amplitude of the total flow disturbance.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, 2005, pp. 64–75.Original Russian Text Copyright © 2005 by Kazakov.  相似文献   

16.
A model which makes it possible to calculate the reverse-flow parameters in the separation zone is constructed on the basis of the results of an integrated experimental study of the characteristics of the separated flow developed in the transition from free to non-free interaction between plane shock waves and the boundary layer on a plate with slip. The effect of the Mach number of the reverse flow in the separation zone on the properties of inner boundary layer separation is analyzed. Features of the interference flow due to boundary layer transition are described. The present study is a continuation of investigations [1–3] devoted to the study of a new steady-state type of interaction between shock waves and the boundary layer on a plate with slip in which the separation line formed would propagate upstream beyond the sharp leading edge if no leading edge was present, i.e., so-called non-free interaction.  相似文献   

17.
The results of a numerical study of the laminar-turbulent transition in unsteady isothermal three-dimensional flows of viscous incompressible fluid in a thick spherical layer between counter-rotating spherical boundaries are presented. The calculations are performed for the governing parameters corresponding to the experimental data [1, 2]. The numerical investigations include both solving the complete system of Navier-Stokes equations and analyzing the linear stability of steady-state axisymmetric flows with respect to three-dimensional disturbances. A stochastic flow regime is calculated for the first time. The limits of existence of different flow regimes and the hysteresis regions are found. The spatial flow patterns and frequency characteristics are obtained, which makes it possible to extend and refine the existing experimental data.  相似文献   

18.
The evolution of artificial perturbations in the boundary layer on the flat section of a plate, on the backward-facing wedge behind the rarefaction wave fan, and in the wake is studied experimentally at the Mach number M=2.  相似文献   

19.
Summary The modification of an axi-symmetric viscous flow due to a relative rotation of a disk or fluid by a translation of the boundary are studied. The fluid is taken to be compressible and electrically conducting. The equations governing the motion are solved iteratively through a central-difference scheme. The effect of an axial magnetic field and disk temperature on the flow and heat transfer are included in the present analysis. The translation of the disk or fluid generates a velocity field at each plane parallel to the disk (secondary flow). The cartesian components of the velocity due to the secondary flow are oscillatory in nature when a rigid body rotation of the free stream along with a translation of the disk is considered. The magnetic field damps out the velocity field, and reduces the thickness of the boundary layer. The cross component of wall shear due to secondary flow acts in a direction opposite to the rotation of the disk or fluid for all cases of the motion. The rise in disk temperature produces an increment in the magnitude of the wall shear associated with the secondary flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号