首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
研究了极紫外波段的双功能光学元件。采用周期膜叠加的思想,运用遗传方法优化设计了在19.5 nm处高反,在30.4 nm处抑制的双功能多层膜。采用磁控溅射技术制备了多层膜,利用X射线衍射仪测试了多层膜的结构,在国家同步辐射实验室测试了双功能多层膜的反射特性。结果表明:制备出的双功能膜性能与设计相符,在入射角13°,19.5 nm处的反射率达到33.3%,接近传统的19.5 nm周期高反膜的反射率,并且在30.4 nm附近将反射率由1.1%降到9.6×10-4。  相似文献   

2.
30.4 nm波长处Mg基多层膜反射镜   总被引:1,自引:0,他引:1  
太阳光谱中重要的He-Ⅱ谱线(波长30.4 nm)的观测对于研究太阳活动和日地空间环境具有重要意义,实现空间极紫外太阳观测需要采用多层膜作为反射元件.研究了工作在30.4 nm的Mg基多层膜.以反射率最高为评价函数设计了多层膜,采用直流磁控溅射技术制备了SiC/Mg,B4C/Mg和C/Mg多层膜,用X射线衍射仪测量了多层膜的结构.研究表明虽然B4C/Mg多层膜理论反射率最高,但实际制备结果显示,SiC/Mg多层膜的成膜质量最好,反射率最高.同步辐射反射率测量表明:在入射角10°时实测的SiC/Mg多层膜反射率为44.6%.  相似文献   

3.
波长30.4 nm的He-II谱线是极紫外天文观测中最重要的谱线之一,空间极紫外太阳观测光学系统需要采用多层膜作为反射元件。为此研究了SiC/Mg、B4C/Mg、C/Mg、C/Al、Mo/Si、B4C/Si、SiC/Si、C/Si、Sc/Si等材料组合的多层膜在该波长处的反射性能。基于反射率最大与多层膜带宽最小的设计优化原则,选取了SiC/Mg作为膜系材料。采用直流磁控溅射技术制备了SiC/Mg多层膜,用X射线衍射仪测量了多层膜的周期厚度,用国家同步辐射计量站的反射率计测量了多层膜的反射率,在入射角12°时,实测30.4 nm处的反射率为38.0%。  相似文献   

4.
19.5nm极紫外反射镜的研制   总被引:1,自引:0,他引:1  
介绍了一种用于太阳观测19.5nm极紫外多层膜的研究工作。利用软件对规整的Mo/Si膜系结构进行了优化,拓宽了反射带宽,提高了积分反射率。采用双离子束溅射技术,时间控厚,成功制备了该反射镜。通过同步辐射反射率计测试表明,峰值反射率27.5%,均匀性在1%以内,已初步达到预设要求。  相似文献   

5.
用直流磁控溅射法结合掩模板控制膜厚的方法在Si衬底上制备了工作于6.8~11.0 nm波段的[Mo/B4C]60横向梯度多层膜。利用X射线掠入射反射测试以及同步辐射反射率测试对梯度多层膜的结构及性能进行了测试。X射线掠入射反射测试结果表明,多层膜周期厚度沿着长轴方向从4.39 nm逐渐增加到7.82 nm,周期厚度平均梯度为0.054 nm/mm。对横向梯度多层膜沿长轴方向每隔5 mm进行了一次同步辐射反射率测试,结果显示,横向梯度多层膜在45°入射角下的反射率约为10%,反射峰的半高全宽介于0.13 nm到0.31 nm之间。  相似文献   

6.
用直流磁控溅射法结合掩模板控制膜厚的方法在Si衬底上制备了工作于6.8~11.0nm波段的[Mo/B_4C]60横向梯度多层膜。利用X射线掠入射反射测试以及同步辐射反射率测试对梯度多层膜的结构及性能进行了测试。X射线掠入射反射测试结果表明,多层膜周期厚度沿着长轴方向从4.39nm逐渐增加到7.82nm,周期厚度平均梯度为0.054nm/mm。对横向梯度多层膜沿长轴方向每隔5mm进行了一次同步辐射反射率测试,结果显示,横向梯度多层膜在45°入射角下的反射率约为10%,反射峰的半高全宽介于0.13nm到0.31nm之间。  相似文献   

7.
极紫外多层膜制备工艺研究   总被引:5,自引:1,他引:5  
王占山  马月英 《光学技术》2001,27(6):532-534
介绍了用平面磁控溅射方法制备极紫外多层膜的研究工作。围绕极紫外多层膜技术 ,重点探讨了多层膜膜厚定标和工艺过程对多层膜结构和内部成分的影响。为深入研究多层膜制备工艺指明了方向。  相似文献   

8.
基于遗传算法的30.4 nm多层膜设计   总被引:5,自引:2,他引:3  
阐述了用遗传算法设计周期和非周期多层膜的原理和实现过程,完成了30.4 nm Mg/SiC周期和非周期多层膜设计,研究了遗传算法中不同种群数和多层膜膜厚取值范围对优化结果的影响.计算发现,种群数的恰当选取是使算法快速达到或逼近最优解的前提,膜厚取值范围的合理选择是提高算法效率的关键.设计得到入射角10°的周期多层膜和15°~22°范围内的宽角多层膜在波长30.4 nm处的反射率依次为56.57%与39.96±0.29%,5°入射的双功能多层膜在波长30.4 nm和58.4 nm处的反射率分别为54.1%和0.1%.结果表明遗传算法也是一种很好的多层膜设计方法.  相似文献   

9.
Liu Z  Li X  Ma YY  Chen B  Cao JL 《光谱学与光谱分析》2011,31(4):1138-1141
为了满足类氖-锗X射线激光研究的需要,设计制备了23.4 nm软X射线多层膜反射镜.依据多层膜选材原则并考虑材料的物理化学特性选择新的材料Ti与Si组成材料对.设计优化材料多层膜的周期厚度(d),材料比例(Γ),周期数(N),计算出Ti/Si反射率曲线.通过实验优化各种镀膜工艺参数,制备出了23.4 nm的Ti/Si多...  相似文献   

10.
50~110 nm波段高反射率多层膜的设计与制备   总被引:1,自引:0,他引:1  
阐述了50~110 nm强吸收波段亚四分之一波长多层膜的设计方法.这种膜系是由强吸收材料叠加而成,每层膜光学厚度小于四分之一个波长.与常规周期多层膜相比,这种膜系更适用于提高强吸收波段的反射率.利用该方法设计了50 nm处高反射多层膜,并以此为初始条件通过Levenberg-Marquart优化方法完成了50~110 nm强吸收波段宽带高反射率Si/W/Co多层膜的设计,其平均反射率达到45%.采用直流磁控溅射方法制备了Si/W/Co多层膜,用X射线衍射仪(XRD)对膜层结构进行了测试,测试结果表明制作出的多层膜结构与设计结构基本相符.  相似文献   

11.
为制备硼边附近6.7 nm波长的极紫外高反射率多层膜反射镜,研究了Mo2C/B4C,Mo/B4C周期多层膜,重点解决薄膜应力难题。采用直流磁控溅射技术制备了膜层厚度为30 nm的Mo,Mo2C,B4C单层膜,周期厚度为3.5 nm,30对的Mo2C/B4周期多层膜。利用台阶仪测试了镀膜前后基底面形,计算并比较了不同薄膜样品的应力值。结果表明Mo2C/B4C多层膜压应力要远小于Mo/B4C多层膜,且成膜质量与Mo/B4C相当。因此Mo2C/B4C是应用于6.7 nm反射镜较好的多层膜材料组合。C,Mo/B4C  相似文献   

12.
为制备硼边附近6.7 nm波长的极紫外高反射率多层膜反射镜,研究了Mo_2C/B_4C,Mo/B_4C周期多层膜,重点解决薄膜应力难题。采用直流磁控溅射技术制备了膜层厚度为30 nm的Mo,Mo_2C,B_4C,单层膜,周期厚度为3.5 nm,30对的Mo_2C/B_4C,Mo/B_4C周期多层膜。利用台阶仪测试了镀膜前后基底面形,计算并比较了不同薄膜样品的应力值。结果表明Mo_2C/B_4C多层膜压应力要远小于Mo/B_4C多层膜,且成膜质量与Mo/B_4C相当。因此Mo_2C/B_4C是应用于6.7 nm反射镜较好的多层膜材料组合。  相似文献   

13.
为研制极紫外波段窄带多层膜反射镜,采用低原子序数材料组合设计了30.4 nm波长处Mg/SiC,Si/SiC,Si/B4C和Si/C多层膜反射镜,并与极紫外波段传统的Mo/Si多层膜反射镜进行对比。采用直流磁控溅射技术制备了这些多层膜,在国家同步辐射实验室辐射与计量光束线完成了多层膜反射率测量,测量结果表明:Mg/SiC多层膜的带宽最小,为1.44 nm,且反射率最高,为44%;而Mo/Si多层膜的反射率仅为24%,带宽为3.11 nm。实验结果证明了采用低原子序数材料组成的多层膜的带宽要比常规多层膜窄,该方法可以应用于极紫外波段高分辨研究。  相似文献   

14.
采用磁控溅射方法在Si基板上镀制了横向梯度分布的Mo/Si周期多层膜。以X射线掠入射反射测量了横向梯度多层膜的膜系结构,在基板65 mm长度范围内,多层膜周期从8.21 nm线性减小到6.57 nm,周期梯度为0.03 nm/mm。国家同步辐射实验室反射率计的反射率测试结果表明:该横向梯度分布周期多层膜上不同位置,能反射在13.3~15.9 nm波段范围内不同波长的极紫外光,反射率为60%~65%。  相似文献   

15.
为满足极紫外、软X射线和X射线大口径多层膜反射镜的需求,采用基板扫掠过矩形靶材表面的镀膜方法,在直径120 mm的平面基板上镀制了Mo/Si周期多层膜。通过调整基板扫掠过矩形靶材表面的速率修正了薄膜的沉积速率,极大地提高了薄膜厚度的均匀性。采用X射线衍射仪对反射镜不同位置多层膜周期厚度进行了测量,结果表明,在直径120 mm范围内,Mo/Si多层膜周期厚度的均匀性达到了0.26%。同步辐射测量多层膜样品不同位置处的反射率,结果表明,在直径120 mm范围内,多层膜的膜层厚度均匀,在入射角10°时13.75 nm波长处平均反射率为 66.82%。  相似文献   

16.
磁控溅射制备横向梯度分布的Mo/Si周期多层膜   总被引:1,自引:0,他引:1  
 采用磁控溅射方法在Si基板上镀制了横向梯度分布的Mo/Si周期多层膜。以X射线掠入射反射测量了横向梯度多层膜的膜系结构,在基板65 mm长度范围内,多层膜周期从8.21 nm线性减小到6.57 nm,周期梯度为0.03 nm/mm。国家同步辐射实验室反射率计的反射率测试结果表明:该横向梯度分布周期多层膜上不同位置,能反射在13.3~15.9 nm波段范围内不同波长的极紫外光,反射率为60%~65%。  相似文献   

17.
为满足极紫外、软X射线和X射线大口径多层膜反射镜的需求,采用基板扫掠过矩形靶材表面的镀膜方法,在直径120 mm的平面基板上镀制了Mo/Si周期多层膜。通过调整基板扫掠过矩形靶材表面的速率修正了薄膜的沉积速率,极大地提高了薄膜厚度的均匀性。采用X射线衍射仪对反射镜不同位置多层膜周期厚度进行了测量,结果表明,在直径120 mm范围内,Mo/Si多层膜周期厚度的均匀性达到了0.26%。同步辐射测量多层膜样品不同位置处的反射率,结果表明,在直径120 mm范围内,多层膜的膜层厚度均匀,在入射角10°时13.75 nm波长处平均反射率为66.82%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号